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A current algebraic analysis on genome-wide heterozygosity
estimates suggests that correlations between molecular
markers and genome-wide heterozygosity, q, depend on
the ratio between the number of markers used, r, and the
number of genome loci, n; that is: q �

ffiffiffiffiffiffiffi
r=n

p
: Hence, it is

unfeasible to obtain reliable estimates of genome-wide het-
erozygosity in species of large genome using a few markers.
We cast some doubts about this analysis as it assumed that
the probability that an individual was heterozygous at a locus
is equal to the average heterozygosity of this locus in the pop-
ulation. However, we believe that individual heterozygosity
at a given locus depends on individual pedigree. Because the
pedigree is common for all loci of an individual, their proba-
bilities of heterozygosity are not independent within the
genome. We first performed simulations generating ran-
dom genomes for 100 individuals. Among these individuals,
markers and genome-wide heterozygosities correlated as
expected from the above equation. However, when we sim-
ulated random mating among these individuals and in succes-
sive generations including their descendents, as occur in real
populations, the correlations between markers and genome-
wide heterozygosity were much higher than those predicted
from algebraic analyses, and estimates of genome-wide het-
erozygosity improved slightly with the increment of the num-
ber of loci in the genome.

It is thought that heterozygous individuals possess fitness
advantages with respect to homozygous (e.g., Charlesworth
D and Charlesworth B 1987). This idea has attracted the in-
terest of numerous scientists to estimate heterozygosity of
the individuals. Since the advent and application of DNA
polymorphic markers, researches have measured heterozy-
gosity at a handful of neutral markers as an estimate of
genome-wide heterozygosity. However, several theoretical
studies have recently questioned this approach because they
consider that the expected correlations between markers het-
erozygosity and genome-wide heterozygosity are presumably
very poor. Most of these criticisms come from studies per-

forming simulations that analyzed the relationship between
inbreeding and heterozygosity measured at a few neutral
markers (Baloux et al. 2004; Slate et al. 2004). These studies
concluded that correlates between inbreeding coefficients
and markers heterozygosity are so weak that any correlation
between heterozygosity measured in different parts of ge-
nome should be unexpected. More recently, DeWoody
YD and DeWoody JA (2005) carried out an algebraic analysis
on this subject, concluding that genome-wide heterozygosity
is poorly estimated by microsatellite loci. Therefore, this an-
alytic approach seems to reinforce the thesis of noncorrela-
tion between markers and genome-wide heterozygosity.
However, we cast some doubts about the validity of this
analysis.

The analysis carried out by DeWoody YD and DeWoody
JA (2005) is based on a formula provided by Chakraborty
(1981) to calculate the expected correlation (q) between
the individual heterozygosity across all loci in the genome
(H) and individual heterozygosity as estimated by molecular
markers (h). This is given by the equation:

q5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

n

ð2� hÞð3� 2hÞ � 2ð1� hÞ2ðr � 1Þ=ðn� 1Þ
ð4� 3hÞ

� �s
;

where n is the number of loci in the genome, r is the number
of markers assayed, and h is the average heterozygosity of the
markers assayed. DeWoody YD and DeWoody JA (2005) ob-
served that q remains tightly constrained by the ratio of the
number of markers assayed to the number of loci in the ge-
nome, whereas h has a small effect on q. Thus, an approxima-
tion of the former formula would be q �

ffiffiffiffiffiffiffi
r=n

p
: This means

that if we use a certain number of microsatellites for esti-
mating markers heterozygosity, we could expect smaller
correlations with genome-wide heterozygosity if the genome
consists of 10 000 loci than if it consists of only 1000. The
result is very disappointing because the number of markers
normally used is extremely low in relation to the number of
loci included in the genome. For example, in species with a
genome consisting of 30 000 loci, the expected correlation co-
efficients between genome-wide and markers heterozygosity
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would be around 0.02 if we use a set of 10 or 15 markers,
which is a usual number in many current studies.

The reasoningconductedbyDeWoodyYDandDeWoody
JA (2005) from this equation appears to be correct. How-
ever, the equation provided is based on a questionable as-
sumption done in the original paper by Chakraborty (1981)
inspired on Mitton and Pierce’s (1980) simulations. He as-
sumed that the probability that an individual was heterozy-
gous at a locus, i, is equal to the heterozygosity of this locus
in the population, hi (Chakraborty 1981, p. 461). Thus, all
individuals in the population would have the same probability
of being heterozygous in a particular locus, and the proba-
bilities of 2 loci of being heterozygous for a particular
individual would be totally independent. However, we believe
that in real populations, these assumptions are not attain-
able because the probability of heterozygosity of an individual
for a particular locus is not determined by the population, but
by the parental genotypes. To illustrate the error of these
assumptions, imagine a cross of 2 siblings in a population.
The probability that their offspring was homozygous at any
locus is higher than the probability of homozygosity of those
loci in other individuals resulting from outbred crosses. Thus,
within an individual, the probability that any locus was hetero-
zygous depends on the pedigree of that individual. Because the
pedigree is common for all loci of an individual, their proba-
bilities of heterozygosity are not independent.

To show our arguments, we have performed 100 simu-
lations that generate random genomes consisting of 200,
300, . . . , 1000 coding loci for 100 individuals that represent
the founder population. Each ith locus has a random number
of alleles (between 2 and 10) in the population, with equal
frequency. The probability of bearing any allele at a locus
is equal for all individuals. Thus, the probability of being het-
erozygous, hi, depends on the number of alleles and is equal
for all members in the population. Note that this ‘‘zero gen-
eration’’ is, therefore, exactly the same as the population
imagined by Chakraborty (1981). From the pool of coding
loci, we extracted 50 loci that represent the markers used
to estimate genome-wide heterozygosity. For each simula-
tion, the average individual heterozygosity obtained from
markers was correlated with individual genome-wide hetero-
zygosity. We performed 100 simulations, and found that the
average correlation coefficients with genomes ranging from
200 to 1000 loci were closely similar to those predicted by
DeWoody YD and DeWoody JA (2005) (Figure 1A).

Now, let us consider a second stage of simulations in
which successive generations are included. Founder individ-
uals mated randomly and every pair bred once and produced
2 offspring. Obviously, each offspring received an allele from
the father and another from the mother for each particular
locus whose alleles were also randomly selected among those
of the parents. The descendents mated at random to breed
again in similar conditions than their parents did (i.e., 1 repro-
ductive event and 2 offspring), and these simulation condi-
tions continued for 10 generations. In this case, we found
that correlations between markers and genome-wide hetero-
zygosity were much higher than those predicted byDeWoody
YD and DeWoody JA (2005) at equal r/n ratio, even after

2 generations only (Figure 1A). Therefore, simulations con-
sidering a few generations with Mendelian allele inheritance,
do not support the predictions derived from the analytical
development by Chakraborty (1981) and DeWoody YD and
DeWoody JA (2005).

Figure 1. (A) Correlation coefficients between markers

and genome-wide heterozygosity in relation to the

proportion of number of loci assayed, r, relative to number

of loci in the genome, n. Broken line represents the

expected correlation coefficients from algebraic analysis

by DeWoody YD and DeWoody JA (2005). Circles, filled

and open squares and their respective bars represent mean

correlation coefficients and standard errors (SEs) obtained

at different generations (F0, F2, and F10, respectively)

in 100 populations whose founders were endowed with

random genome. (B) Mean correlation coefficients between

heterozygosity values (±SE) of 1000 coding loci and

10 (open squares) and 50 (full squares) unlinked neutral

markers obtained across 10 generations in 100 simulated

populations. Note that in Figure 1A, markers were considered

as part of the coding genome, whereas in Figure 1B markers

were not.
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In the previous section, we have assumed that markers
used to estimate genome-wide heterozygosity are a part of the
coding genome following Chakraborty (1981) and DeWoody
YD and DeWoody JA (2005). However, the practical inter-
est discussed by DeWoody YD and DeWoody JA (2005)
is about estimating heterozygosity from the whole coding ge-
nome using neutral markers, such as microsatellites, rather
than directly using coding loci. Because we normally use neu-
tral marker loci, our sample is not included within coding ge-
nome for which we are estimating heterozygosity. Therefore,
the expected correlation predicted by the algebraic analysis
should be zero. However, under identity disequilibrium (e.g.,
Bierne et al. 2000; Hansson and Westerberg 2002) orig-
inated by the effects of mating after a few generations, we
could expect correlations between genome-wide and markers
heterozygosities although both parts of the genome are not
physically linked. To illustrate our arguments, we also included
50 additional loci in our simulations that represent neutral
markers and, therefore, they are not part of the coding ge-
nome. Then, we examined correlations between heterozygos-
ity at these markers and heterozygosity at the 1000 simulated
coding loci. The correlation was zero in the F0 generation, as
expected, as genomes were randomly generated. Nevertheless,
only 3 generations were enough to produce significant cor-
relations between markers and coding loci heterozygosity
(Figure 1B). The observed correlations occurred because of
identity disequilibrium generated by inbreeding variance (e.g.,
Balloux et al. 2004; Slate et al. 2004), but not by sampling
markers as a part of the coding genome.

Another aspect of the algebraic analysis is that the reliabil-
ity of genome-wide heterozygosity estimates would decrease
with the increase of the number of loci included in the ge-
nome. However, this conclusion is only true under the con-
ditions assumed above, when those molecular markers are
part of the pool of the genome (Chakraborty 1981; DeWoody
YD and DeWoody JA 2005). In this case, the greater propor-
tion of genome sampled the higher correlation. We wondered
if those correlations would be poorer when genome consists
of a great number of coding loci and markers are not part of
the coding genome. To explore this, we performed 35 sim-
ulations with a variable number of coding loci (up to 20 000),
and also with different set of neutral markers (10, 20, 30, and
50). Correlations between genome and markers heterozygos-
ity increased with both number of markers (F1,33 5 176, P,

0.0001) and number of coding loci in the genome (F1,335 77,
P, 0.0001) for any set of markers (Figure 2). To explain this
positive correlation, we should take into account that we are
using neutral marker loci, and our sample is not included
within the coding genome for which we are estimating het-
erozygosity. Thus, correlations between coding genome and
neutral markers heterozygosity are only due to identity dis-
equilibrium originated by inbreeding variance that affects
heterozygosity of both, markers and coding loci. The asso-
ciation between inbreeding and heterozygosity in both, cod-
ing and marker loci, is disturbed by random effects due to
Mendelian segregation and these random effects are relatively
less important when the number of loci is greater than when
smaller. Therefore, the higher the number of loci in neutral

markers or genome, the better is the correlation between
their heterozygosities.

In conclusion, it seems obvious that genome-wide het-
erozygosity is not a random product, but the result of indi-
vidual pedigree in real populations. The simplification that
the probability of heterozygosity was the same for all individ-
uals in a population makes easier the algebraic analysis but it
is an unreal assumption that leads to false conclusions as
shown. Assuming that individuals inherit one allele per locus
from its father and another from its mother, and considering
only a few generations, we have demonstrated that correla-
tions between markers and genome-wide heterozygosity are
expected to be higher than those predicted from algebraic
analyses. Furthermore, neutral markers allow predicting more
reliable heterozygosity of larger than of smaller genomes.
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