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Population bottlenecks, inbreeding, and artificial selection can all,
in principle, influence levels of deleterious genetic variation.
However, the relative importance of each of these effects on
genome-wide patterns of deleterious variation remains contro-
versial. Domestic and wild canids offer a powerful system to
address the role of these factors in influencing deleterious variation
because their history is dominated by known bottlenecks and
intense artificial selection. Here, we assess genome-wide patterns
of deleterious variation in 90 whole-genome sequences from breed
dogs, village dogs, and gray wolves. We find that the ratio of amino
acid changing heterozygosity to silent heterozygosity is higher in
dogs than in wolves and, on average, dogs have 2–3% higher ge-
netic load than gray wolves. Multiple lines of evidence indicate this
pattern is driven by less efficient natural selection due to bottle-
necks associated with domestication and breed formation, rather
than recent inbreeding. Further, we find regions of the genome
implicated in selective sweeps are enriched for amino acid changing
variants and Mendelian disease genes. To our knowledge, these
results provide the first quantitative estimates of the increased bur-
den of deleterious variants directly associated with domestication
and have important implications for selective breeding programs
and the conservation of rare and endangered species. Specifically,
they highlight the costs associated with selective breeding and
question the practice favoring the breeding of individuals that best
fit breed standards. Our results also suggest that maintaining a
large population size, rather than just avoiding inbreeding, is a crit-
ical factor for preventing the accumulation of deleterious variants.
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Many of the mutations that arise in genomes are weakly
deleterious and reduce fitness but are not always elimi-

nated from the population by purifying natural selection. Con-
sequently, understanding the reasons why deleterious mutations
persist in populations and the role of demographic history in this
process is of considerable interest (1–9). The radiation of do-
mestic dogs offers a unique opportunity to address these ques-
tions. Dogs were originally domesticated from ancestral gray
wolf populations >15,000 y ago in a process involving one or
more severe population bottlenecks (10–12). The more recent
isolation of modern dog breeds, which occurred over the last
300 y, involved additional population bottlenecks, intense arti-
ficial selection, and inbreeding (refs. 11 and 13–15; Fig. 1A).
Although this history is predicted to have resulted in the accu-
mulation of deleterious variants, its specific effect on genome-
wide patterns of deleterious variation remains unclear.
Here, we use complete genome sequencing data from 46 dogs

representing 34 breeds, 25 village dogs, and 19 wolves to directly
examine patterns of deleterious genetic variation across the dog
genome (Dataset S1). Because more than half of these data
derive from our own sequencing efforts, this project represents
the largest survey of dog genetic diversity based on genome

sequences to date. Overall, we find that population bottlenecks
associated with domestication have resulted in a proportional
increase of amino acid changing variants in dogs relative to wolves
and also have led to an increase in the additive genetic load in
dogs relative to wolves. We also find an enrichment of amino acid
changing variants surrounding regions of the genome that have
been targeted by selective sweeps, suggesting that deleterious vari-
ants have increased in frequency because of hitchhiking with nearby
positively selected variants. Finally, Mendelian disease genes are
enriched in sweep regions, suggesting a link between disease and
traits under strong artificial selection. Taken together, our results
indicate that the domestication process has dramatically reshaped
patterns of deleterious variation across the dog genome.

Results and Discussion
Description of the Data. Using a combination of in-house gener-
ated data (n = 50) and published sequences (n = 40; refs. 16–18),
we collated a dataset of 90 canid whole genomes representing 46
breed dogs, 25 village dogs, 19 gray wolves, and a single genome
from a golden jackal to polarize ancestral and derived states
(Dataset S1). Our analyses focused on patterns of genetic di-
versity at putatively neutral sites far from genes (SI Appendix, SI
Materials and Methods), fourfold degenerate sites (nonamino
acid changing coding variants), and zerofold degenerate sites
(amino acid changing coding variants).

Significance

Dogs have an integral role in human society, and recent evi-
dence suggests they have a unique bond that elicits a benefi-
cial hormonal response in both dogs and human handlers.
Here, we show this relationship has a dark side. Small pop-
ulation size during domestication and strong artificial selection
for breed-defining traits has unintentionally increased the
numbers of deleterious genetic variants. Our findings question
the overly typological practice of breeding individuals that best
fit breed standards, a Victorian legacy. This practice does not
allow selection to remove potentially deleterious variation
associated with genes responsible for breed-specific traits.
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We divided our dataset into two groups based on sequencing
coverage. The first group contains the subset of genomes with
high sequencing coverage (>15×) comprising 25 breed dogs and
10 wolves. For this dataset, we called individual genotypes using
the Genome Analysis Toolkit (GATK, ref. 19). The second group
consists of all 90 canid genomes. Many of these genomes have low
sequence depth where genotype calls are less reliable. For these
data, we estimated per individual heterozygosity (i.e., average
pairwise differences between sequences) using a maximum likeli-
hood approach based directly on sequence reads (Materials and
Methods). To assess the performance of this method, we compared
our read-based estimates of heterozygosity to those from geno-
types called using GATK (19) on a subset of high-coverage ge-
nomes. We found the two estimates of heterozygosity to be highly
concordant, suggesting that our estimator performs well (SI Ap-
pendix, SI Text and Fig. S1). Importantly, because our read-based
estimator was applied to subsamples of only four reads per in-
dividual, it is appropriate even for the lower-coverage genomes.
Estimates of heterozygosity are not affected by sequencing cov-
erage (SI Appendix, Fig. S2). Comparison of the high-coverage
data to genotype array data shows negligible batch effects, a low-
false discovery rate (∼1%), and a false-negative rate of <8% (SI
Appendix, SI Text and Fig. S3).

Genome-Wide Patterns of Deleterious Variation. Because we typi-
cally have only 1–2 genomes per breed or population, we first
focus on patterns of heterozygosity. To evaluate the role of
population size in affecting deleterious variation, we calculate
the ratio of zerofold to fourfold heterozygosity (20–22). This
ratio is an estimate of the proportion of amino acid changing
mutations that are not removed by selection. Assuming constant
selection coefficients across populations, changes in this ratio
indicate that demographic effects modulate the efficacy of se-
lection. We chose this metric because it quantifies how demography

affects selection without estimating parameters in complex de-
mographic models for all populations (21, 22).
In our data, the ratio of zerofold heterozygosity to fourfold

heterozygosity shows a strong negative correlation with levels of
neutral heterozygosity (Pearson’s r = −0.534, P < 6 × 10−8, Fig. 1
B and C and SI Appendix, Fig. S4A and Table S1). Breed dogs
have lower levels of neutral heterozygosity than wolves, consis-
tent with their bottlenecked demographic history. However, they
show disproportionately higher levels of amino acid (zerofold)
heterozygosity (Fig. 1B). This result is concordant with previous
estimates based on more limited data (a single boxer genome
and mtDNA data; refs. 23 and 24) and suggests that the pro-
portional elevation in deleterious amino acid variation in dogs
relative to wolves is seen across a range of breeds. Much of this
pattern is driven by the difference between breed dogs and
wolves. It diminishes when analyzing them separately (SI Ap-
pendix, Fig. S4B), although statistical power also is reduced.
Patterns of neutral heterozygosity in the village dogs fall between
those of breed dogs and wolves, consistent with their interme-
diate effective population size and variable levels of admixture
between modern and ancient breeds (25). However, the ratio of
zerofold to fourfold heterozygosity in village dogs depends to
some degree on the filters used and is either similar to that in
breed dogs or intermediate to that of dogs and wolves (SI Ap-
pendix, Fig. S4C). Interestingly, several wolf populations appear
to show lower levels of neutral heterozygosity and higher ratios
of zerofold to fourfold heterozygosity than breed dogs. These
include the Tibetan wolves, which were previously shown to have
low genetic diversity (18), and the Isle Royale wolf, which is a
highly inbred island population derived from two founders in the
1950s (26). The negative correlation in Fig. 1 is unlikely to be
driven by hypermutable CpG sites (SI Appendix, Fig. S4C) or
regions affected by selective sweeps (SI Appendix, Fig. S4D),
because it persists after removing these genomic features. Fur-
ther, dogs still show an elevated zerofold/fourfold ratio com-
pared with wolves when accounting for the shared genealogical
history of different individuals (SI Appendix, Fig. S5).
Although no individual gene showed a significantly higher

zerofold/fourfold ratio in dogs relative to wolves after correction
for multiple testing (SI Appendix, Table S2), the von Willebrand
factor (VWF) gene had the highest ratio (SI Appendix, Table S2).
VWF has been implicated in bleeding disorders in breed dogs
(27), suggesting the increased level of amino acid changes in this
gene may be of relevance to health.
To test whether our observed patterns could be explained

solely by differences in demographic history between breed dogs
and wolves, we conducted forward in time population genetic
simulations. We examined different models of population history
that had previously been fit to genetic variation data of dogs and
wolves (Fig. 1A and SI Appendix, Tables S3–S5). We assumed the
same distribution of selection coefficients across populations in
all simulations (SI Appendix, SI Text and Table S6). Whereas
simulations assuming additive effects predict a negative rela-
tionship between neutral heterozygosity and the ratio of zerofold
heterozygosity to fourfold heterozygosity, previously inferred
distributions of selective effects for humans and mice did not
match the quantitative patterns seen in our data (SI Appendix, SI
Text and Figs. S6 and S7). However, distributions including more
weakly deleterious mutations provided a better fit (Fig. 1B and
SI Appendix, Figs. S6 and S7). These results can be interpreted in
the context of the nearly neutral theory (22, 28). Neutral het-
erozygosity is proportional to the effective population size and
because selection is less effective at eliminating weakly delete-
rious variation in small populations relative to larger ones, we
observe a negative correlation between neutral heterozygosity
and the ratio of zerofold to fourfold heterozygosity. Thus, pro-
vided there are enough amino acid changing mutations that are
weakly to moderately deleterious (jsj < 0.001), the population
bottlenecks associated with dog domestication have reduced the
ability of negative selection to remove deleterious variants.
When assuming fully recessive effects for all deleterious mutations,
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Fig. 1. Population history and deleterious genetic variation. (A) Conceptual
model of dog domestication used in population genetic simulations. Box
widths are proportional to estimated population sizes (SI Appendix, Table
S4). (B) The ratio of zerofold to fourfold heterozygosity vs. neutral genetic
diversity. Observed heterozygosity is based on four reads per individual. The
larger circles represent the trimmed median values for each population
group, and the error bars denote 95% confidence intervals on the trimmed
median for each population group. Triangles denote the Tibetan wolves. A
square denotes the Isle Royale wolf. The solid black line denotes the best-fit
linear regression line (Iintercept = 0.301, slope = −29.00, r = −0.534, P < 6 × 10−8).
The dashed line denotes the best-fit linear regression line from forward
simulations of demography and negative selection (SI Appendix, Tables S4
and S7). (C) The ratio of zerofold to fourfold heterozygosity vs. neutral
genetic diversity in the 35 high-coverage genomes where genotypes were
called using GATK. The solid black line denotes the best-fit linear regression
line (intercept = 0.276, slope = −21.43, r = −0.777, P < 5 × 10−8), and the
dashed line is as described in B.
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we observed a positive relationship between neutral heterozygosity
and the ratio of zerofold heterozygosity to fourfold heterozygosity
(SI Appendix, Fig. S8). This result is consistent with theoretical work
showing the number of recessive deleterious alleles can decrease
after a bottleneck (29). Taken together, our results argue that most
segregating deleterious mutations in dogs and wolves are not fully
recessive and more consistent with an additive model.

The Role of Recent Inbreeding. Dogs from some breeds are ho-
mozygous for large (>1 Mb) regions of the genome, suggesting
recent mating among close relatives (i.e., inbreeding; ref. 30 and
SI Appendix, Fig. S9A). This inbreeding can reduce the effective
population size, allowing deleterious alleles to drift higher in
frequency and is a mechanism commonly assumed to account for
the accumulation of deleterious mutations in dog genomes (31)
but has not been formally assessed. Based on three distinct
analyses, we find that recent inbreeding is not driving the pat-
terns shown in Fig. 1.
First, we conducted additional forward simulations including

negative selection and recent inbreeding within breed dogs. Even
strong inbreeding (F = 0.2) over the last 300 y, without the
bottlenecks associated with domestication and breed formation,
is insufficient to generate the observed negative relationship
between the zerofold/fourfold heterozygosity ratio and neutral
heterozygosity (Fig. 2A). Second, we attempted to remove the
effects of recent inbreeding on our analysis of heterozygosity.
Because recent inbreeding increases the probability that two
chromosomes within a given individual share a common ancestor
with each other rather than with a chromosome from another
individual (SI Appendix, Fig. S9A), it will reduce within-individ-
ual heterozygosity relative to between-individual heterozygosity
(32). Thus, we can obtain an estimate of heterozygosity removing
the effects of inbreeding by sampling a single read from each
individual at each site and determining whether the reads have
different nucleotides (SI Appendix, SI Text). Forward simulations
indicate that this approach removes the effects of recent in-
breeding on heterozygosity (SI Appendix, Fig. S9). However, in
contrast, in the actual data, neutral heterozygosity computed
from two canids remains negatively correlated with the ratio of
zerofold to fourfold heterozygosity (Fig. 2B), suggesting recent
inbreeding is not the cause of the association. Finally, when re-
moving large runs of homozygosity (>2 Mb) from our analyses
(SI Appendix, SI Text), the negative relationship between neutral
heterozygosity and the ratio of zerofold heterozygosity to four-
fold heterozygosity remained strong (Fig. 2C), indicating that it
was not driven by patterns of variation within regions of the

genome most affected by inbreeding. These unexpected findings
imply that population bottlenecks, rather than recent inbreeding,
are responsible for the proportional increase in amino acid
changing heterozygosity in breed dogs relative to wolves.

Genetic Load in Dogs Vs. Wolves. Our results indicate demography
has affected the ability of purifying selection to remove weakly
deleterious variants. However, these analyses do not directly
assess the burden of deleterious variants per genome. To quan-
tify this burden, we focused on a subset of the dog and gray wolf
genomes with high coverage (Dataset S1), and tabulated the
number of neutral and deleterious variants per genome. The
Tibetan wolf that appears as an outlier in Fig. 1C was excluded
from this analysis (results were similar with the Tibetan wolf; see
SI Appendix, SI Text and Fig. S10). We defined deleterious var-
iants as those amino acid changes that occurred at phylogeneti-
cally conserved sites as measured by the Genomic Evolutionary
Rate Profiling (GERP) scores (33). Wolves carry significantly
more deleterious amino acid changing variants in the heterozy-
gous state than do breed dogs (P < 2 × 10−5, Mann–Whitney U
test, Fig. 3A; SI Appendix, Table S7). However, breed dogs carry
approximately 320 (22%) more derived deleterious amino acid
changing genotypes in the homozygous state relative to wolves
(P < 4 × 10−8; Fig. 3A). We then assessed the number of derived
deleterious alleles per genome by counting heterozygous geno-
types once and homozygous-derived genotypes twice. After
correcting for the increased false negative rate for heterozygous
genotypes compared with homozygous derived genotypes (SI
Appendix, SI Text and Fig. S10D for counts before correction),
breed dogs carry ∼115 more derived deleterious alleles than do
wolves, corresponding to a 2.6% increase relative to wolves (P <
0.002). There are significantly more heterozygous genotypes in
wolves than in dogs and significantly more homozygous-derived
genotypes in dogs than in wolves at putatively neutral synony-
mous SNPs as well (Fig. 3B). However, the number of synony-
mous-derived alleles per individual does not differ between dogs
and wolves (Fig. 3B and SI Appendix, Table S7), suggesting that
neutral processes alone cannot explain these patterns. We also
defined deleterious amino acid changes to be those that differ in
polarity and volume, as measured by the Miyata distance (34), and
observed qualitatively similar patterns (SI Appendix, Fig. S10B).
The counts of deleterious variants per individual imply that

the genetic load is higher in dogs than in wolves. This conclusion
holds if mutations act in an additive manner, because the average
dog carries 2–3% more derived deleterious alleles than the av-
erage wolf. As a more direct measure of the genetic load, we
calculated the GERP score load for each individual. The GERP
score load is the sum of the GERP scores over all of the dele-
terious nonsynonymous variants carried by each individual. Dogs
have a 2.1% higher GERP score load compared with wolves (P <
0.008, Mann–Whitney U test, Fig. 3C; SI Appendix, Fig. S10C).
Further, simulations under our demographic and selective
models predict that the genetic load will be 2–3% higher in dogs
than wolves (Fig. 3D and SI Appendix, SI Text). The increase in
load in dogs would be even more pronounced if deleterious
mutations were partially recessive, because dogs carried more
homozygous derived deleterious variants per individual. We
caution, however, that statements about genetic load depend on
the underlying demographic and selective models. Further, they
assume positive selection that may increase the frequencies of
many variants (i.e., polygenic selection) does not account for
these patterns (6). However, polygenic selection does not appear
to be the dominant force underlying phenotypic change in dogs,
because association studies suggest that a small number of large-
effect alleles that have been subjected to artificial selection can
account for much of the variance in traits (30, 35, 36). Finally,
after filtering previously identified selective sweep regions, both
the number of derived deleterious alleles and GERP score load
remains significantly higher in dogs than wolves (P < 0.008),
arguing that the genome-wide patterns are not driven by the
artificially selected regions (SI Appendix, Fig. S11).

A B C

Fig. 2. Recent inbreeding does not drive the relationship between neutral
heterozygosity and the zerofold/fourfold heterozygosity ratio. (A) Forward
simulations using a demographic model that includes inbreeding over the
last 100 generations, but not bottlenecks associated with domestication or
breed formation (“wolf” demographic model in SI Appendix, Table S4).
(B) Empirical results from computing heterozygosity using one read from
each of two individuals per population. The solid line denotes the best-fit
linear regression line (intercept = 0.288, slope = −27.25, r = −0.502, P = 0.024).
(C) The relationship between neutral polymorphism and the ratio of zerofold
to fourfold heterozygosity persists when removing runs of homozygosity. The
solid black line denotes the best-fit linear regression line (intercept = 0.287,
slope = −27.07, r = −0.757, P < 5 × 10−7). This plot uses the same data as in
Fig. 1C, but removing ROHs. Red triangles denote the Tibetan wolves.
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Recently, questions have been raised concerning whether re-
cent demographic history can affect the genetic load. Some
studies showed similar numbers of putatively deleterious alleles
per individual across human populations (3, 4). In contrast, other
recent studies reported a significant increase in the number of
deleterious alleles (5, 37) and a higher additive genetic load in
non-African populations compared with African populations (5,
6, 8, 37, 38). Our present findings of a higher genetic load in dogs
compared with wolves supports the view that recent demo-
graphic history can affect genetic load. The magnitude of the
increase in additive genetic load in non-African human pop-
ulations has been estimated to be slight, ∼1–3% (5, 6, 8, 37, 38),
which is similar in magnitude to the increase we observed in dogs
relative to wolves (Fig. 3). Given the differences in the timing
and severity of the bottlenecks experienced by humans and dogs,
it is surprising that both species show qualitatively similar trends.
This similarity suggests that the genome-wide human-mediated
demographic processes associated with domestication, although
increasing the per individual counts of deleterious variants and
the additive genetic load, have not enhanced the genome-wide
burden beyond that caused by natural demographic processes in
other species. More generally, these findings argue that even
extreme recent population bottlenecks may only result in a subtle,
but often statistically detectable, increase in the per-individual
count of deleterious alleles and the additive genetic load.

Enrichment of Amino Acid Changing Variants Surrounding Selective
Sweeps. Although the selective sweep regions were not driving
the genome-wide patterns of deleterious variation, the extreme
artificial selection during domestication could result in the hitch-
hiking of deleterious variants surrounding the sweeps (39–41). To
evaluate this effect, we focused on a set of 421 selective sweep
regions identified through a comparison of domestic dogs to
wolves (12, 42). The sweep regions show the expected signatures
of classic selective sweeps in dogs (43), such as decreased genetic
diversity at putatively neutral fourfold sites using two different
measures (Fig. 4A for Watterson’s θ; see SI Appendix, SI Text for
average pairwise differences) and an increase in neutral derived
allele frequency (Fig. 4B). These sweep regions do not show a
decrease in neutral diversity in wolves (SI Appendix, Fig. S12),
supporting the idea that they are genuine targets of selection
in dogs.
We next examined patterns of variation at amino acid

changing (zerofold) sites. Watterson’s θ is similar between sweep
and nonsweep regions (Fig. 4A), suggesting that the number of
deleterious variants in the sample per 10 kb in the sweep regions
is similar to that of nonsweep regions. Because the number of
neutral variants has been reduced in the sweep regions, there is
an enrichment of zerofold variants within the sweep regions. The
average derived allele count of zerofold SNPs is significantly
elevated within the sweep regions (Fig. 4B), suggesting that
zerofold variants experienced the same increase in frequency due
to hitchhiking within the sweep regions as fourfold variants. Fi-
nally, we examined the number of derived zerofold alleles per
100 bp. This metric is influenced both by the number of SNPs
and by their frequency in the population (SI Appendix, SI Text).
The total number of derived alleles per 100 bp at zerofold sites is
1.26 fold higher in the sweep regions compared with the non-
sweep regions (Z = 9.6, P < 4 × 10−22, two-sample Z test; Fig.
4C), indicating that, when normalized to have the same sequence
length, sweep regions contribute more to the genetic load of
amino acid changing variants than the nonsweep regions. How-
ever, because most of the genome lies outside of the sweep re-
gions, the sweeps do not affect the overall genome-wide patterns
of variation (SI Appendix, Fig. S4D and S11).
The enrichment of amino acid changing variants near selective

sweeps in dogs is significantly greater than that in wolves, sug-
gesting it is not driven by other factors like differences in mu-
tation or recombination rates (SI Appendix, SI Text and Figs. S13
and S14). Conceivably, the excess of amino acid variation sur-
rounding the selective sweeps could be the direct target of pos-
itive selection. However, we believe hitchhiking of deleterious
mutations is a better explanation (SI Appendix, SI Text).

Enrichment of Mendelian Disease Genes Near Selective Sweeps. We
assessed whether artificial selection may partially be responsible
for the numerous Mendelian genetic diseases observed in breed
dogs. Specifically, we determined whether the previously reported
targets of selective sweeps (12, 42, 44, 45) were enriched for genes
implicated in disease. We find slightly more overlap among 145
genes implicated in Mendelian disease in dogs and genes near
recent selective sweeps than expected by chance (P = 0.087 and
P = 0.155; SI Appendix, Table S8). To increase statistical power,
we repeated our analyses by using 2,535 genes causing Mendelian
diseases in humans based on the shared disease etiology between
humans and dogs (46, 47). We find more Mendelian disease genes
overlap with genes near the selective sweeps reported by Vaysse
et al. (44) and Akey et al. (45) (i.e., sweeps related to breed
formation) than expected by chance (P = 0.005 and P = 0.057,
respectively; SI Appendix, Table S9). This enrichment could be
explained by two different mechanisms. First, genes controlling
artificially selected traits in dogs could be the same set of genes
that confer Mendelian disease in humans. Alternatively, the
human disease genes could also cause disease in dogs but be
located in regions linked to those under selection for breed
traits. Disease alleles would increase in frequency because of
hitchhiking with the variants controlling the trait under intense
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Fig. 3. Comparison of the burden of deleterious genetic variation between
breed dogs (blue) and wolves (red) based on high-quality genomes. “Ho-
mozygous derived” refers to the number of genotypes per individual that
are homozygous for the derived allele. The total number of derived alleles is
based on counting each heterozygous genotype once and each homozygous
derived genotype twice. Small points denote the genomes used for each
species (n = 25 for breed dogs, n = 9 for wolves). (A) Nonsynonymous vari-
ants that are predicted to be deleterious (GERP score >4). (B) Synonymous
variants. (C) GERP score load for each individual. (D) Genetic load computed
from our forward simulations. Outlier points are not shown for clarity. Left
shows the load due to mutations that became fixed within the most recent
2,480 generations. Middle shows the load contributed by segregating mu-
tations only. Right shows the total load, combining fixed and segregating
variants. P < 0.008 for all comparisons between dogs and wolves using a
Mann–Whitney U test except the comparison of the total number of syn-
onymous derived alleles (SI Appendix, Table S7).
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artificial selection. Under either mechanism, our results suggest
that an associated cost of selection for specific traits in breed
dogs is an enhanced likelihood for Mendelian disease. Considering
that many modern breeds have been selected for unusual ap-
pearance and size, which reflects fashion more than function, our
results raise ethical concerns about the creation of fancy breeds.
For example, positive selection for black coat color in poodles may
have caused a high frequency of copy number variants of the
KITLG gene, resulting in an increased frequency of squamous cell
carcinoma of the nail bed (48). Interestingly, we find no enrich-
ment of Mendelian disease genes in selective sweeps that occurred
early during dog domestication (i.e., sweeps identified through
comparison of dogs and wolves), perhaps suggesting that early and
breed-specific sweeps involve fundamentally different types of
genes (SI Appendix, SI Text and Tables S8 and S9).

Conclusions
Our results show that the domestication process has dramatically
affected patterns of deleterious variation across the dog genome.
First, population history has had a genome-wide effect that in-
creases the burden of deleterious variation in breed dogs as in-
dicated by an elevated level of amino acid changing variation
relative to wolves where selection is more efficacious. Com-
parison of the additive genetic load between dogs and wolves
reveals qualitatively similar trends to those seen in comparisons
of bottlenecked and nonbottlenecked human populations. This

similarity indicates that, although detectable, the effect of recent
demography on additive genetic load is likely to be subtle, even
for extreme bottlenecks. Although dramatic fitness consequences
in dogs are often thought to be caused by recessive mutations of
large effect, we find that as in humans, most of the additive
genetic load is accounted for by numerous weakly deleterious
mutations (5, 6), which are particularly hard to remove from
bottlenecked populations. Second, intense artificial selection for
desirable traits results in a concomitant accumulation of dele-
terious variation in genes trapped in sweep regions. This finding
is especially disconcerting because sweep regions are enriched
for disease-related genes, a finding that highlights anew the
controversy over intense selection for fancy traits in dog breeds
and other domestic species. Importantly, selectively breeding a
limited number of individuals during domestication or breed
formation can reduce effective population size across the ge-
nome. Thus, selective breeding practices can increase deleterious
variation genome-wide, not just at the loci controlling selected
traits. Third, our demographic models suggest that repeated
population bottlenecks and small effective population size have
had a more profound effect on the accumulation of weakly
deleterious variation than does recent inbreeding (i.e., mating
between close relatives). Consequently, to minimize the accu-
mulation of deleterious variation in the increasing number of
species suffering from habitat loss and fragmentation, conser-
vation efforts should focus on maintaining sufficient population
sizes in the wild and captivity, rather than focusing exclusively on
inbreeding avoidance. Finally, our approach provides a com-
prehensive method for evaluating deleterious variation from
genome data in the small isolated and threatened populations
worldwide that can help prioritize their genetic management.

Materials and Methods
Genomic Data. Breed dogs were sequenced at the University of Missouri on
an Illumina GAIIx, 2000 or 2500. These studies were approved by the Uni-
versity of Missouri, Animal Care and Use Committee and performed with
informed consent of the dogs’ owners. Wolves were sequenced at BGI and
the University of California, Berkeley sequencing core. Genomes generated
here have been deposited into the Short Read Archive (Dataset S1). Data
were processed by using standard bioinformatics pipelines (SI Appendix, SI
Text), including alignment to CanFam 3.1 by using BWA (49), indel re-
alignment, base quality score recalibration, and filtering of reads with
quality <30. Neutral and coding regions were taken from ref. 10.

Estimation of Heterozygosity Without Calling Genotypes. Our approach to es-
timating heterozygosity from the low-coverage data, called FourSite (https://
github.com/LohmuellerLab/FourSite), is similar to that described by Lynch (50)
(SI Appendix, SI Text). For each site within a given genome, we sample four
sequencing reads and tabulate whether: (i) all four reads are the same base, (ii)
two reads are one base and two reads are a different base, or (iii) one read is
one base, and three reads are a different base. We then computed the likeli-
hood of the heterozygosity and sequencing error rate as function of these
counts across a particular functional category (SI Appendix, SI Text).

Analysis of the High-Coverage Genomes. We selected a high coverage sample
set consisting of the 36 samples (10 gray wolves, 25 breed dogs, and a golden
jackal) with an average genomic coverage > 15× for SNP genotype calling
(Dataset S1). Genotypes were called by using GATK (19) (SI Appendix, SI
Text). Heterozygosity was calculated as the number of heterozygous geno-
types for each individual divided by the number of called genotypes. Runs of
homozygosity were identified by using PLINK (51).

Accumulation of Deleterious Derived Alleles. To assess the accumulation of
deleterious derived alleles in dogs and wolves, we counted the number of
variants in each of 25 dog genomes and 9 or 10 gray wolf genomes (SI
Appendix, SI Text). We used the golden jackal as an outgroup to classify the
ancestral state and considered only those sites where the jackal was ho-
mozygous as the ancestral allele. Because the jackal has evolved since the
common ancestor with dogs and wolves, it may not perfectly represent the
true ancestral state. However, this error is not expected to bias the relative
comparison of variants between dogs and wolves because both show similar
levels of divergence with jackal (ref. 10, SI Appendix, SI Text). We normalized
for differences in missing data across individuals and corrected the number
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Fig. 4. Genetic variation surrounding nonsweep (dark gray) and sweep (light
gray) regions in breed dogs. (A) Watterson’s θ, an estimate of genetic diversity
based on the number of SNPs. (B) The average derived allele count (DAC) per
SNP. (C) Average DAC per 100 bp (considering invariant positions). Each variant
site is counted the number of times its derived allele appears in the sample.
Error bars are 95% confidence intervals. Note the decrease in diversity in A and
the increase in derived allele frequency (B and C) at fourfold sites, the expected
patterns surrounding a selective sweep. However, the total number of zerofold
variants is not reduced near sweeps (A), and the average frequency of derived
zerofold alleles is increased near the sweeps (B and C).

156 | www.pnas.org/cgi/doi/10.1073/pnas.1512501113 Marsden et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
https://github.com/LohmuellerLab/FourSite
https://github.com/LohmuellerLab/FourSite
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512501113/-/DCSupplemental/pnas.1512501113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1512501113


of derived alleles per animal for the fact that the false-negative rate for
calling heterozygous genotypes is higher than for calling homozygous
genotypes (SI Appendix, SI Text).

Forward Simulations. Todeterminewhether we could recapitulate the negative
correlation between the zerofold/fourfold ratio and neutral heterozygosity
using realistic models of demography and purifying selection, we performed
forward in time simulations under the Wright Fisher model in the Poisson
Random Field framework (2, 52, 53). We explored a variety of different dis-
tributions of selective effects, including those fit to mouse (54) and human (55)
data, as well as several custom distributions (SI Appendix, SI Text).

Analysis of Coding Genetic Diversity near Vs. far from Sweeps. We used sweep
regions that have been identified in the ancestral population of breed dogs,
presumably related to domestication (12, 42). To assess whether there were
differences in patterns of variation between sweep and nonsweep regions,
we performed a jackknife over chromosomes. The SE on our point estimates
of diversity were computed from the SD of these jackknife estimates. Given
these SEs, 95% confidence intervals were determined under the standard
normality assumptions.

Testing for Overlap Between Mendelian Disease Genes and Genes Located in
Selective Sweeps.We tested whether genomic regions implicated in selective
sweeps are enriched for genes that cause Mendelian diseases. We used genes
that were reported in the Online Mendelian Inheritance in Animals database

to cause Mendelian disease in dogs as well as genes in the Online Mendelian
Inheritance in Man “morbidmap” implicated in Mendelian diseases in
humans. We then examined three different sets of selective sweep regions
identified in dogs, including the set of sweeps associated with domesti-
cation that are shared across breeds and were described above for the
deleterious mutation analysis as well as two sets of breed-specific sweeps
(44, 45) (SI Appendix, SI Text). We then computed the probability of
observing as many or more overlapping genes by chance alone using a
hypergeometric distribution.
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SI Text 
 

Sequence processing, read alignment and filtering 

We converted all fastq files to Sanger quality score encoding and then trimmed adaptor 

sequences and low quality sequences (quality score < 20) from reads using SCYTHE 

(https://github.com/vsbuffalo/scythe) and SICKLE (https://github.com/najoshi/sickle).  The 

trimmed reads were then aligned to the dog genome (CanFam 3.1) using BWA 0.6.2 (ref.1) with 

default parameters.  We removed reads not mapped in a proper pair or with low mapping quality 

scores (< 30) using SAMTOOLS 0.1.19 (ref. 2), and then we marked and removed any duplicate 

reads using PICARD TOOLS 1.77 (http://picard.sourceforge.net/). 

Indel realignment and base quality score recalibration 

We performed indel realignment and base quality score recalibration (BQSR) on the 

extracted coding and neutral region bam files. The presence of indels in reads that are not present 

in the reference genome often result in mismatches around the indel that appear as SNPs.  

Consequently, we conducted local realignment around indels using the RealignerTargetCreator 

and IndelRealigner tools in the Genome Analysis Toolkit v 3.2.2 (GATK, refs. 3, 4). These tools 

were run with default settings without a database of known indels. 

Sequence base quality scores reflect the probability that the called base is an error.  

However, sequencers often produce inaccurate and biased base quality scores. We therefore 

applied BQSR with GATK. In order to run BQSR, it is necessary to provide a database of known 

variant sites which is used to distinguish between true variants and errors. Therefore, we first 

conducted a round of SNP calling with Unified Genotyper in GATK with a minimum base 

quality score threshold of 20. SNP calling was conducted on individual samples (vs joint calling) 
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to prevent biases in SNP calling accuracy between groups with different numbers of samples. 

Multiple rounds of BQSR were conducted until convergence was observed.  

Additional quality filters 

Standard variant calling pipelines routinely apply filters to reads prior to calling, and post 

hoc filters are applied to the called variants. These filters reduce the potential contribution of 

errors. As the read based estimates of heterozygosity are directly applied to the reads, it was 

important to apply additional filters to reduce the potential for errors to contribute to 

heterozygosity estimates. Therefore, we took the BQSR bam files and used a custom python 

script to change any bases within a read with a quality score < 30 to ‘N’ so that they would be 

ignored in downstream read-based analyses 

(https://github.com/cdmarsden/replace_lowqualitybases). Then, we removed reads with low 

overall quality. Specifically, reads where the length was shorter than 40 bp after trimming, or 

where more than 20% of the bases in the read had quality scores less than 30 were removed 

(https://github.com/cdmarsden/remove_lowqualityreads). 

Extracting Neutral and Coding regions  

From the above processed files, we extracted a set of neutral and coding regions using 

BEDTOOLS v2.17.0 (ref. 5). The neutral regions were a set of 5,139 1 kb neutral regions 

previously identified by (6).  In brief these regions were selected based on an absence of coding 

DNA, having a distance far from known and predicted genes (>100 kb) and >50 kb from another 

selected neutral region, with PhastCons scores >0.5, no evidence of elevated GC content or 

consecutive 50 bp windows with mappability score >2 and an absence of N’s in the reference 

genome. The set of extracted coding regions also was based on those regions previously 

identified by (6).  These regions were derived from NCBI and Ensembl annotation databases, 
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with the longest transcripts for each gene selected to prevent the same sites from being included 

more than once after all transcripts without proper start and stop codons, and with premature stop 

codons were removed.  Finally, for both the coding and neutral regions, we masked CpG islands 

and repeat regions. CpG sites were removed for certain analyses as described throughout the text. 

This was done by filtering any position that came after a C nucleotide or before a G nucleotide in 

the CanFam3.1 reference sequence (7).  

Identifying zero and four fold sites 

Within the coding regions, we identified the zero and four-fold degenerate sites by 

iterating across all four possible bases at each site along a transcript and recording the changes in 

the resulting amino acid. Sites were classed as zero-fold degenerate when the four different bases 

resulted in four different amino acids, and four-fold degenerate when no changes in amino acids 

were observed.  

Estimation of heterozygosity without calling genotypes 

Here we fully describe our approach to estimating heterozygosity from sequencing reads 

without calling genotypes. First, a pileup is made, and an iterator used to move along a bam file 

site by site. The base calls at each site are extracted and assessed to determine whether to include 

the site. Specifically, we excluded sites where more than two bases are observed, or where the 

number of reads observed at the site is less than four or greater than four times the average 

genome coverage of the individual (which may be indicative of copy number variants / 

misalignment). Otherwise, we select a random sample of 4 reads and count whether 1) all four 

reads are the same base, 2) two reads are one base and two reads are a different base, or 3) one 

read is one base, and three reads are a different base. We repeated these counts 10 times for each 

site, and averaged the results across the ten iterations. Down sampling to 4 reads per genome per 
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site is meant to eliminate systematic biases that may be present due to uneven depths of coverage 

across different regions of the genome or between different genomes. We note that the 

distributional properties of this estimator based on averaging over 10 samples of reads per site 

will be influenced by the genome-wide coverage as the same reads have a higher probability of 

being chosen more often in low-coverage samples. However, because our goal in performing the 

resampling process is to simply try to obtain a better point estimate of the heterozygosity, rather 

than assess the uncertainty in our estimate, we do not think that this should cause any systematic 

biases. In support of this, we found that our estimates of heterozygosity were not correlated with 

the coverage (SI Appendix, Fig. S2), suggesting that our approach is robust to variable degrees 

of coverage across samples. However, the ratio of 0-fold to 4-fold heterozygosity showed a weak 

negative correlation with coverage (r = -0.24, P = 0.024). Nevertheless, neutral heterozygosity 

was still a significant predictor of the 0-fold/4-fold ratio in a multiple regression including 

coverage as a predictor (intercept = 0.316, slope = -30.4, P = 3.96 x 10-9), suggesting that our 

results are not driven by differences in coverage. The python script (CountReadFoursite.py) used 

for these calculations is available from the Lohmueller lab Github page 

(https://github.com/LohmuellerLab).   

 Let Xi refer to the average number of reads (averaged across the 10 resamplings as 

described above) showing the alternate allele at site i in the genome of a particular individual. 

Thus, Xi is our observed data. Because we are considering only 4 reads per site,  

Xi ∈ 0,1,2,3,4{ } . Let Gi refer to the number of copies of the minor allele in the genotype at site i 

in the same individual. Gi is unknown. Gi ∈ 0,1,2{ } for homozygous reference, heterozygous, 

and homozygous non-reference genotypes, respectively. Further, let us also assume that 

sequencing errors occur at a rate of ε per site per read. In practice, we estimate ε from the data. 
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 We can then write down a genotype likelihood or P(Xi | Gi). For Gi = 0, the only way that 

Xi > 0 is if there are sequencing errors. Then,   

P(Xi |Gi = 0) =

(1− ε )4         ,Xi = 0
4ε(1− ε )3     ,Xi = 1
6ε 2 (1− ε )2   ,Xi = 2
4ε 3(1− ε )    ,Xi = 3
ε 4                ,Xi = 4

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

. 

For Gi = 1 (heterozygous genotypes), we assume that sequencing errors have a symmetric effect, 

as previously presumed (8). Thus, we do not consider them in the likelihood. Second, we assume 

that Xi is binomially distributed and that the probability of drawing a read from each of the two 

alleles is 0.5. Then, we can write down a trivial binomial likelihood: 

P(Xi |Gi = 1) =

0.54                 ,Xi = 0
4(0.5)(0.5)3     ,Xi = 1
6(0.5)2 (0.5)2   ,Xi = 2
4(0.5)(0.5)3     ,Xi = 3
0.54                 ,Xi = 4

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

. 

The genotype likelihood for Gi = 2 is essentially the same as for Gi = 0, except switching Xi = 0 

and Xi = 4 and switching Xi = 1 and Xi = 3. 

Following Lynch (8), we can now write the likelihood of the parameters, π and ε based on 

the observed data at a particular site. Specifically, for observed data configuration Xi = k: 

L(π ,ε | Xi = k) = P(Xi = k |Gi = 0)+ P(Xi = k |Gi = 2)[ ](1−π )+ P(Xi = k |Gi = 1)π . 

Let Nk denote the number of sites with the functional annotation of interest where there are k 

reads for the non-reference allele (and 4-k reads for the reference allele). In other words, Nk is the 

number of sites where Xi = k. Assuming that sites are independent, we can write down the log-

likelihood of the full data for that annotation as: 
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l(π ,ε | N ) = Nk ln L(π ,ε | Xi = k)[ ]
k=0

4

∑ . 

To find the maximum likelihood estimates (MLEs) of π and ε, we maximized the above 

likelihood function using a grid-search. For our data, we searched a range of 0.00005 to 0.003 for 

π. This is likely to be a reasonable range as previous studies of canid genetic diversity have 

provided estimates well within this range (6, 9). For ε, we searched a range from 0.0001 to 0.001. 

This is also reasonable as we filtered bases with quality scores less than 30 (corresponding to 

0.001). Our error model does not explicitly account for read mapping errors. Thus, while in 

principle the error rates per base could be much greater than our upper bound of 0.001 in the grid 

search, we found that they were always less than this upper bound (Dataset S1), suggesting that 

our upper bound in the grid search is reasonable. We used step sizes of 10-5 for both parameters.  

Intuitively, this estimator allows us to jointly estimate the error rate and heterozygosity 

by considering four reads at a site. Because error rates are typically low (<0.001), it is unlikely 

that more than one random error will occur at a particular site. Thus, those sites where there are 2 

reads for each allele (Xi = 2) are unlikely to be due to sequencing errors and instead are likely to 

be true heterozygotes. The Xi = 1 and Xi = 3 sites are a mixture of truly heterozygous sites and 

sequencing errors. By using the information from the Xi = 2 sites, we correctly account for both 

possibilities. Importantly, while the approach assumes that errors are randomly distributed, there 

are likely to be systematic errors that can lead to Xi = 2. However, our data indicate this has little 

effect in practice as we find that the estimates of heterozygosity from our low-coverage approach 

agree reasonably well with those obtained on a subset of individuals using GATK (see below and 

SI Appendix, Fig. S1). Note that the GATK-based estimates of heterozygosity were from only 

high-coverage individuals using all the reads. However, for the low-coverage estimation, we 

followed the approach described above and used only 4 reads per site. 
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We have implemented these calculations in an R script called FourSite.R which is 

available on the Lohmueller Github page (https://github.com/LohmuellerLab/FourSite). 

Evaluation of the quality of the low-coverage data 

 To evaluate the quality of the estimates of heterozygosity using FourSite on the low-

coverage sequencing data, we compared them to estimates from the higher-coverage genomes. 

Specifically, we focused on the 25 breed dogs and 10 wolves that were within our high-coverage 

genome set. We treated these individuals as though they had lower coverage and applied our 

FourSite approach to estimate heterozygosity using four reads per site as described above. We 

then compared these estimates using the low-coverage data to estimates made from these same 

individuals when calling genotypes from the deeper sequencing data using GATK. Overall, 

estimates of heterozygosity from the low-coverage data show excellent concordance with the 

estimates from GATK (SI Appendix, Fig. S1). There is a slight degree of overestimation of 

neutral heterozygosity in the low-coverage analysis, but some of this may be due to 

underestimating heterozygosity in the high-coverage genomes (see “Evaluation of the quality of 

the high-coverage data” for further discussion). There is a very slight underestimation of 4-fold 

heterozygosity in the low-coverage data. However, this effect is consistent across populations, so 

it should not bias our estimates of differences in patterns of genetic variation between dogs and 

wolves. 

 Next, we tested for a relationship between the ratio of 0-fold heterozygosity to 4-fold 

heterozygosity and neutral variation using the FourSite estimates (based only on the low-

coverage data) of heterozygosity from the 35 high coverage genomes. The 0-fold to 4-fold ratio 

shows a strong negative correlation with neutral heterozygosity when using the estimates of 

heterozygosity derived from the low-coverage data (SI Appendix, Fig. S4A). This pattern is 



 10 

similar to that obtained when using the genotypes called using GATK (Fig. 1C).  Quantitatively, 

the regression parameters are similar to each other from these two different datasets (SI 

Appendix, Table S1). The 95% CIs on the slope and intercept parameters obtained from the 

GATK called genotypes overlap with those from the FourSite approach. However, we observe a 

slight upward bias in the estimate of the intercept parameter from the FourSite data relative to the 

GATK genotypes. This bias may be driven by the slight under-calling of 4-fold heterozygosity in 

the low-coverage analysis relative to the called genotypes. Importantly, this bias only affects the 

overall 0-fold to 4-fold ratio and not the relationship between that ratio and neutral 

heterozygosity, which is captured in the slope parameter. The estimates of the slope show greater 

agreement between the two methods of processing the data. Finally, because we compare both 

the low-coverage and high-coverage estimates to the predictions from the forward simulations, 

this slight upward bias does not affect any of our conclusions. 

Estimation of heterozygosity from two dogs 

Estimates of heterozygosity computed from a single individual may be affected by recent 

inbreeding. Recent inbreeding will result in the two alleles at a given locus within a given dog 

sharing a common ancestor more recently than two alleles sampled from different animals (SI 

Appendix, Fig S9A). This idea has been formalized in Wright’s FIS statistic, which in its simplest 

form, can be written as: 

FIS =
HS − HI

HS

. 

where HS is the expected heterozygosity within a sub-population, and HI is the observed 

heterozygosity within an individual sampled from the sub-population. 

This statistic suggests that heterozygosity computed between different individuals can 

provide an alternate estimator of heterozygosity that should not be affected by recent inbreeding. 
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Simulations show that this is in fact the case (SI Appendix, Fig S9B and S9C). Specifically, we 

simulated data under a model of population history that included bottlenecks associated with 

domestication and breed formation as well as inbreeding over the most recent 100 generations. 

This inbreeding results in a reduction in heterozygosity and a weak negative relationship 

between neutral heterozygosity and the 0-fold to 4-fold heterozygosity ratio (SI Appendix, Fig 

9B). Our estimator, which samples one allele from each of two individuals, is not affected by this 

recent inbreeding (SI Appendix, Fig. 9C). 

 Thus, we applied this estimator to our data. For the 17 populations where we had at least 

2 different animals, we re-computed heterozygosity, using one sequence read at a given site from 

each of the two individuals (see code at https://github.com/LohmuellerLab/FourSite). Thus, as 

long as the two individuals are not closely related, this approach should remove the effects of 

recent inbreeding reducing heterozygosity within an individual. 

We estimated heterozygosity from a pair of sequence reads from individuals j and k using 

the following approach. Let Xi = 0 if the two reads are the same and Xi = 1 if the two reads are 

different at site i. First, consider sites that are true differences between a single allele sampled 

from animals j and k (Gi = 1). Under the assumption that sequencing error rates are low and that 

the number of sites that differ between animals are low, then P(Xi = 1|Gi = 1) = 1 .  

Second, consider the case where the two alleles are the same. Because this is likely to be 

the case for most of the sites across the genome, we need to account for sequencing errors, even 

when the error rate is low. Here,  

P(Xi = 0 |Gi = 0) = (1− ε j )(1− ε k )+ ε jε k
P(Xi = 1|Gi = 0) = (1− ε k )ε j + (1− ε j )ε k

, 

where εj and εk are the sequencing error rates for dogs j and k, respectively.  
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In practice, we use the MLEs for εj and εk that were obtained for each animal from each 

class of sites using the FourSite approach described above. Consequently, the likelihood can be 

written as: 

L(π ,ε | Xi = 0) = P(Xi = 0 |Gi = 0)[ ](1−π )+ 0π
L(π ,ε | Xi = 1) = P(Xi = 1|Gi = 0)[ ](1−π )+ P(Xi = 1|Gi = 1)π

. 

Let N1 denote the number of sites with the functional annotation of interest where there is a 

difference between the reads for dogs j and k and N0 denote the number of sites where the reads 

are the same. Assuming that sites are independent, we can write the log-likelihood of the full 

data for that annotation as: 

l(π ,ε | N ) = N0 ln L(π ,ε | Xi = 0)[ ]+ N1 ln L(π ,ε | Xi = 1)[ ] . 

We also used a grid-search to find the MLE of π. 

SNP and genotype calling on high-coverage genomes 

We selected a high coverage sample set consisting of the 36 samples (10 grey wolves, 25 

breed dogs, and a golden jackal) with an average genomic coverage > 15X for SNP genotype 

calling (Dataset S1).  Using the coding and neutral BQSR bam files, we conducted single sample 

SNP calling with GATK (refs. 3, 4) using a minimum base quality score of 30, and emitting both 

variant and invariant sites.  We then merged all of the individual sample vcfs, and applied GATK 

best practices on post hoc quality filters (QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < -

12.5, ReadPosRankSum < -8.0), as well as setting a per sample minimum and maximum depth of 

coverage of 2 and 80 respectively, and minimum genotype quality of 20.  Finally, we removed 

any non-biallelic variant sites and clustered SNPs (> 3 SNPs within 10 bp). Genotype calls, 

functional annotations, Miyata scores, and GERP scores for coding SNPs can be found in the 
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“Dogwolf_vcf_Filtered_coding_region_with_Miyata_and_GerpScore_annotated.vcf” file on 

Dryad (doi:10.5061/dryad.012s5). 

Evaluation of the quality of the high-coverage data 

 Because we employed a consistent bioinformatics pipeline to all the samples used in our 

study, we expect bioinformatics batch effects between samples and populations to be minimized. 

However, the genome sequences were obtained from different labs, sequencing machines, and 

different time points. Thus, it is important to assess the overall quality of the data to ensure it is 

not confounded by these batch effects. We assessed the overall quality of our high-coverage 

genotype calls described above by comparing them to Affymetrix genotype data from VonHoldt 

et al. (10). One challenge to comparing these data is that they only contain one individual that 

was among our 35 high-coverage genomes was also included in vonHoldt et al. Thus, we utilized 

two different approaches to assess concordance between the genotype and the sequencing data. 

First, as done in Freedman et al. (6), we assessed whether our sequenced genomes 

clustered with other individuals from the same population in the genotype data. If systematic 

batch effects plague our data, then we would expect all our sequenced genomes to form clusters 

that are separate from those seen in the SNP genotype data. On the other hand, if systematic 

batch effects are small relative to differences in genetic variation due to population structure, 

then we expect our sequenced individuals to cluster with SNP genotyped individuals from the 

same population. We focused on the 12 dog breeds where we had high-coverage genomes that 

were represented by at least 12 individuals in the vonHoldt study. In addition, we classified the 

sequenced wolves into 3 main groups: Chinese (n=5), North American (n=2), and Iranian (n=1). 

These groupings had 9, 54 and 1 individuals, respectively in the vonHoldt data. To implement 

this approach, we first selected the SNPs that were among the 47,844 high-quality SNPs in 
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vonHoldt et al. with those SNPs where we called genotypes from our high converge sequencing 

data within the neutral and coding regions. This left a set of 589 SNPs. 

 We then performed principal components analysis (PCA) with the program “smartpca” 

from the EIGENSOFT package (11) using these 589 SNPs. Our sequenced genomes cluster 

based upon patterns of population structure, rather than by type of data (SI Appendix, Fig. S3A). 

Specifically, we find that PC1 primarily separates dogs from wolves and, less dramatically, 

Basenji (an ancient breed) from the other dogs. This pattern is seen both within the SNP 

genotype data as well as our sequenced genomes. PC2 separates the boxer from the other 

genomes. This is due to the known ascertainment effect of the SNPs (the dog reference genome 

is a boxer), but because we focused on using the same set of SNPs from the SNP genotype data 

in our sequencing data, we see this same effect in both types of data. Overall, for the first 5 PCs, 

we find that patterns of genetic variation are concordant between the genotype data and the 

sequencing data. In other words, the sequenced individuals have PC values that are in line with 

what was seen in the genotyped individuals. These findings suggest that batch effects due to 

different sequencing centers or technology are small relative to the true signals of population 

structure in our data. 

 Nonetheless, we did observe a few instances where the sequenced individuals showed 

slight differences in PC values compared to the genotyped individuals. For example, on PC1, 

some of the sequenced Chinese wolves appear to be slightly higher than the genotyped Chinese 

wolves. This pattern may be due to differences in population structure between the two sets of 

Chinese wolves, as the sampling locations of wolves our study differed to those in vonHoldt et 

al. Nevertheless, these differences are slight relative to the main axes of variation present in the 

data. 
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The Iranian wolf also shows differences between the genotype and sequence data. 

Because the sequencing data and the genotype data were from the same individual, we examined 

concordance between these two technologies in greater detail. Specifically, considering the 

intersection of the neutral and coding regions in the sequencing data with the SNPs on the 

Affymetrix chip, 131 sites were called heterozygous in the sequencing data. Of these, 130 were 

also called heterozygous in our genotype data, indicating that we have a false-discovery rate of 

<1% for heterozygotes identified in our high-coverage sequencing data. Of 141 sites were called 

heterozygous in the SNP genotype data, 130 were called heterozygous in our sequencing data. 

This suggests that we have a false-negative rate of 7.8% for heterozygous genotypes in our data. 

Interestingly, we estimate a similar false-negative rate for heterozygous SNPs within our data 

using a completely orthogonal approach and pattern in the data (see “Accumulation of 

deleterious derived alleles” below). The majority of heterozygotes (9/11) called in the genotype 

data that were not detected in our sequencing data had lower than average sequencing depth 

(≤10x). In principle, we could impose a more strict depth filter on the final genotype calls, which 

would remove many of these sites. While this would improve our estimates of the apparent false-

negative rate (because we would no long be counting these sites) and may improve the genotypes 

used in the PCA analysis, it will not reduce the overall false-negative rate in our data. This false-

negative rate is a function of coverage that can only be improved by drastically increasing the 

depth beyond 15x.  

Nevertheless, our false-negative rate is comparable to or lower than that in recent whole-

genome sequencing studies of non-human mammals. For example, when comparing to Sanger 

sequencing, Wang et al. (9) reported false-negative rates of at least 15-20% for SNPs in six dog 

and wolf genomes (their Table S3). Additionally, Auton et al. (12) reported a false-negative rate 



 16 

of 10-15% in their genome resequencing data (their Fig. S2). Finally, Fig. S2 of Nevado et al. 

(13), suggests that in simulated data, the false-negative rate for heterozygous genotypes 

individually called from > 15X data using GATK was close to 20% with the false-negative rate 

for homozygous non-reference genotypes was approximately 8%. We estimate our false-negative 

rate to be lower than these numbers.  

The estimates of heterozygosity seen for the neutral regions in our high coverage 

genomes are in agreement with or exceed estimates presented in previous work. For example, 

Wang et al. (9) report a mean genome-wide estimate of heterozygosity of 1.41 x 10-3 per bp in 

wolves, which falls within the range seen for wolves in our data (0.95 x 10-3 to 1.9 x 10-3). They 

report a mean genome-wide estimate of heterozygosity of 0.73 x 10-3 in breed dogs, which again 

falls within the range seen in our data (0.64 x 10-3 to 1.3 x 10-3). It is not surprising that our 

estimates are generally higher as we have a lower false-negative rate and we are considering data 

from putatively neutral regions of the genome which generally harbor greater diversity than the 

genome-wide average (7, 14, 15). 

Importantly, our analyses are either robust to this false-negative rate, or we explicitly 

correct for it as described below. First, our analysis of the ratio of 0-fold to 4-fold heterozygosity 

should be robust to under-calling heterozygotes. If the rate of under-calling does not 

systematically differ across the genome or across populations, then heterozygotes at both 0-fold 

and 4-fold sites will be under-called to a similar extent and will directly cancel when taking the 

ratio. Similarly, even if one functional category of sites has a greater degree of under-calling than 

the other, this still should not lead to differences in the 0-fold to 4-fold ratio between dogs and 

wolves. For example, if we under-call heterozygosity at 4-fold sites more than at 0-fold sites, this 

would lead to an increase in the 0-fold/4-fold ratio in both dogs and wolves. It should not lead to 
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a difference in the ratio between the populations. The only way that under calling could lead to 

the patterns seen in Fig. 1 is if the rate of under calling differs between dogs and wolves as well 

as across functional categories in a specific way. There is no evidence to support this, and the 

fact that we see a negative correlation between the 0-fold/4-fold heterozygosity ratio and neutral 

heterozygosity in the much larger low-coverage dataset argues against under calling driving 

these patterns. 

Naïve analysis of the number of derived alleles per individual, however, is confounded 

by under-calling heterozygous sites. The reason for this is that the total number of derived alleles 

is a composite count of both heterozygous and homozygous derived genotypes. Because wolves 

have more heterozygous sites than dogs, under-calling heterozygous genotypes (even by the 

same amount in both dogs and wolves) will lead to an apparent decrease in the number of 

derived alleles in wolves relative to dogs. We have developed a method to correct for this bias 

(see “Accumulation of deleterious derived alleles”). Unless otherwise specified, all analyses of 

counts of variants per individual include this correction.  

Lastly, our analysis of deleterious variation surrounding selective sweeps should be 

robust to under-calling heterozygotes genotypes. The reason for this is that we compare the 

sweep regions to the rest of the genome in the same individuals. This comparison serves as a 

built-in control.   

Classifying variant sites as non-synonymous and synonymous with SIFT 

We classified variants as non-synonymous or synonymous with SIFT (ref. 16) 

implemented through Ensemble’s Variant Effect Predictor (VEP) v77 (ref. 17).  Following VEP 

recommendations, sites were classified as nonsynonymous if annotated as missense variant, 

initiation codon variant, inframe insertion or inframe deletion, and synonymous if annotated as 
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stop retained variant or synonymous variant.  All other annotations were ignored. Variants 

annotated as both synonymous and nonsynonymous (due to differing predictions from different 

transcripts) were classified as nonsynonymous. 

Analysis of runs of homozygosity (ROHs) 

 To assess whether the negative correlation between neutral heterozygosity and the 0-

fold/4-fold heterozygosity ratio was driven by recent inbreeding, we repeated our analysis 

removing large ROHs. Longer ROHs are thought to have arisen due to recent common ancestry 

or inbreeding, while shorter ROHs could be due to long-term demographic effects, such as 

population bottlenecks (18). By analyzing only patterns of variation found outside of the long 

ROHs, we should remove the effects on genetic variation that are most driven by recent 

inbreeding.  

 To identify ROHs, we first applied our GATK genotype calling pipeline described above 

to the entire autosomal genomes for the 35 high-coverage individuals.  It was important to use 

the entire genome so that ROH partially overlapping with our coding and neutral regions could 

be most accurately identified. We then used PLINK (19) to identify ROHs that were >2 MB, 

with a separate analysis conducted for each animal. We chose a cutoff of 2 MB as it was slightly 

higher than that suggested to identify ROHs due to recent inbreeding in humans (18). 

Specifically, following Freedman et al. (6) the command used was: 

 

./plink --tfile INFILENAME --homozyg --homozyg-snp 200 --homozyg-kb 2000  --homozyg-

window-missing 100 --homozyg-window-het 10 --allow-no-sex --dog --out OUTFILENAME 
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Then, for each animal separately, we removed any of the coding and neutral sites located within 

the ROH identified in that animal, and re-ran our analysis of patterns of variation. 

Fig. 2C shows that the negative relationship between neutral heterozygosity and the 0-

fold/4-fold heterozygosity ratio still persists after removing patterns of variation within the 

ROHs. This analysis indicates that this pattern is not driven solely by patterns of genetic 

variation most affected by recent inbreeding. It is further evidence of population size driving the 

accumulation of amino acid changing mutations. 

Accumulation of deleterious derived alleles 

We used the following approach to normalize for differences in missing data across 

individuals. Let Li refer to the total number of successfully called genotypes in individual i at a 

particular category of sites (e.g., nonsynonymous). Let Hi refer to the number of called 

genotypes where individual i is heterozygous. We then computed the normalized number of 

heterozygous genotypes in individual i ( 
Hi ) as:  

 
Hi =

Hi

Li

⎛
⎝⎜

⎞
⎠⎟
L , 

where L is the average number of sites successfully genotyped across all individuals. A similar 

procedure was used for the number of homozygous derived genotypes and total number of 

derived alleles. 

Using this procedure, we find a significantly higher number of derived (i.e., non-jackal) 

alleles in the dogs than the wolves for all categories of sites (SI Appendix, Table S7 and Fig. 

S10D for synonymous SNPs). For neutral variants, this finding is unexpected, as standard 

coalescent theory predicts that the bottlenecks in dogs relative to wolves should not affect the 

number of non-jackal alleles per genome, but whether they are partitioned into heterozygous or 
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homozygous genotypes. The increase in non-jackal alleles in dogs relative to wolves could also 

be driven by other demographic processes such as admixture between jackal and wolves, though 

previous studies detected evidence of only limited admixture (6). Further divergence between 

jackal and dog was similar to the divergence between jackal and wolf (0.2%) indicating that 

admixture probably does not account for this pattern. 

Instead, we believe that this increase in non-jackal (i.e., derived alleles) in dogs is due to 

differential missing data rates for heterozygous and homozygous genotypes. Note that the false-

negative rate (i.e., the probability that we do not call a genotype) will be higher for heterozygous 

than homozygous genotypes. The reason for this is that it is generally harder to call heterozygous 

genotypes than homozygous genotypes. As long as this effect is roughly constant across 

populations and individuals, it should not bias the findings of different numbers of heterozygous 

and homozygous genotypes between dogs and wolves. However, because the number of derived 

alleles per genome is a function of both the number of heterozygous and homozygous derived 

genotypes and the relative contribution of the two genotypes to the number of derived alleles 

significantly differs between dogs and wolves, the apparent overall number of derived alleles per 

genome may be biased. Because wolves carry more of their derived (non-jackal) alleles in the 

heterozygous state than do dogs, the difficulty in calling heterozygous genotypes will cause 

fewer derived alleles to be detected in wolves compared to dogs. This effect could then lead to an 

apparent increase in the number of derived alleles shared between dog and jackal. We stress that 

this effect does not require the false-negative rate for heterozygous genotypes to differ between 

dogs and wolves. 

We developed a simple strategy to correct for the different false-negative rates across 

genotypes. Let β be the false-negative rate or the probability of not calling a heterozygous 
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genotype. Further Let HeO,D refer to the observed number of heterozygous genotypes in dogs, 

HeO,W be the observed number of heterozygous genotypes in wolves, HoD be the observed 

number of homozygous derived genotypes in dogs and HoW be the observed number of 

homozygous derived genotypes in wolves. We can now write the true number of heterozygous 

genotypes in wolves as:  

HeT ,W =
HeO,W
1− β

. 

The total number of derived alleles in dogs, DD, is equal to the true number of 

heterozygotes plus twice the number of homozygous genotypes, and is written as: 

DD = HeT ,D + 2HoD . 

Under the assumption that the total number of derived alleles per animal is equal between 

dogs and wolves, we can write: 

HeT ,W + 2HoW = HeT ,D + 2HoD . 

We can then re-write the above expression as a function of the observed heterozygous 

counts and the false-negative rate: 

HeO,W
1− β

+ 2HoW =
HeO,D
1− β

+ 2HoD . 

Rearranging, 

β = 1−
HeO,W − HeO,D
2(HoD − HoW )

. 

We applied the above estimator of β to the observed median counts of heterozygous 

genotypes in dogs and wolves at synonymous variants. We found that β = 0.0964, suggesting 

that approximately 10% of true heterozygous genotypes are called as missing data in both dogs 

and wolves. We then used this value of β to estimate HeT,D and HeT,W and the numbers of derived 
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alleles for all categories of sites, defining the total number of derived alleles per genome as HeT + 

2(Ho). After applying this correction, dogs no longer show an increase in the number of derived 

alleles per genome at synonymous sites, suggesting that this correction is appropriate (SI 

Appendix, Table S7).  

Note that our estimate of β assumes that the false-negative rate for homozygous 

genotypes is 0. This is likely to be an underestimate. However, the relative number of derived 

alleles between populations is sensitive to the difference in false-negative rates between 

heterozygous and homozygous derived genotypes, rather than the actual values. Furthermore, 

using genotype concordance between our sequencing data and SNP genotype data (see 

“Evaluation of the quality of the high-coverage data”), we had estimated a comparable false-

negative rate of 9%. Thus, our approach should be a reasonable correction for comparing the 

number of derived alleles per genome between dogs and wolves.  

We compared counts of the per individual number of variants both with (SI Appendix, 

Fig. S10A) and without (Fig. 3) the Tibetan wolf genome. We excluded this genome because as 

it was clearly an outlier in terms of having low neutral heterozygosity and an elevated 0-fold/4-

fold heterozygosity ratio (Fig. 1C; Fig. 2B and 2C), consistent with its recent history of being 

from a small isolated population (20). As our goal is to assess the extent to which deleterious 

variation may have accumulated in dogs since domestication, we believe it is most appropriate to 

not include this genome as it has been extensively shaped by population history not typical for 

wolf populations and does not reflect levels of deleterious variation in extant wolf populations. 

Nevertheless, we observe similar patterns of deleterious variants in dogs and wolves even if we 

include the Tibetan wolf (SI Appendix, Fig. S10, Table S7). 
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GERP scores 

In order to predict which variants are more likely to be deleterious, we utilized GERP 

scores (21). This approach computes the number of rejected substitutions at each site by 

comparing the observed number of differences across the phylogeny to the number expected 

based on neutral models of evolution. Because it has been previously shown that methods that 

predict functional consequences based on phylogenetic information, like GERP, are biased 

against calling variants that are present in the reference genome as deleterious (22–24), we 

omitted the dog reference genome when computing the GERP scores. As such, we could not use 

the publicly available previously computed GERP scores for humans. We chose GERP over 

SIFT because it was unclear how the SIFT scores were affected by this bias and recomputing 

SIFT scores without the dog would have been more challenging. 

 Instead, we recomputed GERP scores using the GERP++ code 

(http://mendel.stanford.edu/SidowLab/downloads/gerp/). We downloaded FASTA alignments of 

45 vertebrate genomes aligned to hg19 for the UCSC “KnownGenes” list 

(knownGene.exon*.fa.gz) from the UCSC genome browser 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/alignments/). We then ran each 

exon through GERP++, omitting the dog sequence. We used the phylogenetic tree “46way.nh” 

from the UCSC genome browser that was made using the phyloFit program from 4-fold 

degenerate sites. We then converted the CanMap3.1 coordinates of our dog SNPs to hg19 

coordinates using LiftOver to annotate them with a GERP score. Sites with >4 rejected 

substitutions per site were considered deleterious (25).  

Additionally, we also computed the sum of the GERP score across all nonsynonymous 

SNPs carried by an individual. As the GERP score is a quantitative metric regarding the number 
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of substitutions that were rejected by evolution, larger scores indicate that a mutation at that site 

is likely to be more deleterious than a mutation at a site with a lower score. The sum of the 

GERP scores per individual provides an estimate of the genetic load as it is influenced both by 

the number of deleterious variants carried by an individual as well as the degree to which 

variants are deleterious (26, 27). Specifically, let Gi refer to the GERP score load for individual i:  

Gi =
Ri

all het
∑
Li

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

L
(1− β )

+
2Ri

all hom
∑
Li

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
L , 

where Ri is the sum of the GERP scores, Li is the total number of sites with successfully called 

genotypes in individual i, and L is the number of successfully called sites per individual, 

averaged across all individuals. β is the false-negative rate for calling heterozygous sites. This 

expression accounts for differences in missing data across individuals as well as under calling 

heterozygous sites. We count homozygous scores twice to reflect an additive model of load. 

Importantly, we only considered those sites with GERP scores >2, as scores less than this 

indicate neutral evolution, accelerated evolution, or poor quality alignments.  Regardless, it is not 

clear that mutations at these sites would lead to an increase in fitness. 

Miyata prediction of which amino acid changes were most likely to be deleterious 

In addition to GERP scores, we also utilized the Miyata amino acid distance (28). Briefly, 

amino acid mutations that result in changes to the volume or polarity are considered to be more 

deleterious than those that do not result in such a physiochemical change. We chose to use the 

Miyata amino acid distance because previous population genetic analyses have shown that it has 

a reasonable ability to distinguish putatively neutral human SNPs from those that are deleterious 

(29). Specifically, Williamson et al. (29) used the Poisson Random Field approach to estimate 

the strength of purifying selection acting on those variants predicted to be deleterious using the 
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Miyata distance and variants predicted to be neutral. They found that the variants predicted to be 

deleterious using the Miyata distance were under stronger purifying selection than those that 

were predicted to be neutral. The difference in the estimated strength of selection between the 

predicted neutral and predicted deleterious variants was greater for the Miyata distance than 

other popular metrics, such as the Grantham distance or BLOSUM matrices. While other popular 

methods like PolyPhen (30) perform well, the application of PolyPhen to non-human species 

remains challenging. Thus, we chose to use the Miyata distance. 

We applied the Miyata distance to each nonsynonymous variant in our high-coverage 

genomes where individual genotypes were called using GATK. This was done by assigning a 

score to each nonsynonymous variant. Scores were taken from Table 1 of Miyata et al. (28). 

Larger scores indicate a greater chance of an amino acid change disrupting the polarity or 

volume. As done in Williamson et al. (29), amino acid changes with scores >1.85 were 

considered to be deleterious.  

Forward simulations 

Here we describe additional details and parameters used for the forward in time 

simulations. First we discuss the overall simulation framework, followed by the mutation rates, 

then demographic parameters, and lastly, the distribution of selective effects. 

We conducted simulations under the Poisson Random Field framework. The number of 

mutations that occur in generation i follows a Poisson distribution with a mean equal to 2Niul, 

where Ni is the effective population size in generation i, u is the mutation rate and l is the number 

of independent sites being simulated. Each simulation replicate was performed assuming a 

sequence length of 10 million independent sites, where each site can contain one or two alleles 
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and only one mutation can take place in each site. The frequency of a mutation, pi+1, follows a 

binomial distribution Bin(Ni+1,p’), where: 

p ' = (1− s)(p2 + Fpq)+ (1− hs)pq(1− F)
q2 + pqF + (1− hs)2pq(1− F)+ (1− s)(p2 + Fpq) , 

p is the frequency of the derived allele in generation i (the previous generation), q is the 

frequency of the ancestral allele, s is the selection coefficient, F is the inbreeding coefficient, and 

h is the dominance coefficient. For neutral sites, the value of s is equal to 0. Synonymous sites 

were also assumed to be neutral and had a value of s equal to 0. Values of s for nonsynonymous 

mutations were drawn from a gamma distribution of selective effects assuming that, unless 

otherwise noted, all the mutations were additive (h = 0.5). Simulations were performed under a 

variety of models of population history. See below for further details on the mutations rates, 

demographic models, and distributions of selective effects used in the simulations.  

At the end of the simulation, we sampled individual animals and computed their 

heterozygosity. Because some of our simulations included recent inbreeding, and inbreeding 

results in an increase in homozygosity relative to a randomly mating population, we included its 

effects in computing heterozygosity. Specifically, the genotype for animal i at site j was drawn 

from a multinomial distribution with probabilities: 

P(Genotype) =

pj
2 + pjqjF

2pjqj (1− F)

qj
2 + pjqjF

⎧

⎨
⎪⎪

⎩
⎪
⎪

Homozygous for the derived allele
Heterozygous

Homozygous for the ancestral allele
 

 where pj is the frequency of the derived allele in the population at site j, qj is the frequency of 

the ancestral allele at site j, and F is the inbreeding coefficient used in the simulation. 
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Heterozygosity was computed by dividing the number of heterozygous sites over the 

number of sites simulated per simulation replicate (10 million). We also determined the 

proportion of heterozygous sites when sampling one allele from two different animals. To do 

this, we sampled two genotypes following the previous equation. Then, we sampled one allele 

from each of the two genotypes and determined that the site was heterozygous if the two sampled 

alleles were different. The total proportion of heterozygous sites in two dogs was obtained by 

dividing the number of heterozygous sites by the number of sites simulated. 

We accounted for differences in mutation rates (µ) across 0-fold, 4-fold, and neutral sites 

using the following approach. First, we assume that CpG sites have a 10-fold higher mutation 

rate than do non-CpG sites. The mutation rates employed for the neutral, 0-fold and 4-fold sites 

used for the simulations were dependent on the proportion of CpG sites found within those three 

categories of sites in humans and our data. We then obtained estimates for the proportion of CpG 

sites in different functional categories from the literature. Veeramah et al. (31) found that in 

humans 5.75% of the autosomal 0-fold sites were CpG sites while 9.1% of the autosomal 4-fold 

sites were CpG sites. To estimate the proportion of CpG sites for neutral sites, we examined the 

proportions of all sites occurring within a ‘CG’ motif (i.e., any site after a C and any site before a 

G) from our data. We observed that ‘CG’ motifs were 9.1% more frequent in 0-fold sites than in 

neutral sites. While not all of the ‘CG’ motif sites are necessarily CpG sites, we predict there 

should be around 9.1% more CpG sites at 0-fold sites compared to neutral sites. Therefore, we 

reasoned that the proportion of CpG sites in neutral sites was equal to 5.27%. Using these 

numbers, we obtained the mutation rates of different categories of sites as: 

, µ = P(CpG)(10)(B)+ (1− P(CpG))(B)
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where P(CpG) is the proportion of sites that are CpGs in that category of sites and B is the 

background mutation rate for non-CpG sites. The factor of 10 indicates the assumed 10-fold 

increase in the mutation rate at CpG cites. We began with a neutral mutation rate of µ = 2 x10-8. 

Then, for neutral sites with P(CpG) = 5.27%, we obtain B = 1.356 x10-8. That equation can also 

be used to obtain the mutation rate for 0-fold and 4-fold sites by using that same value of B and 

replacing P(CpG) by 5.75% and 9.1%, respectively. Using this procedure we obtain mutation 

rates of µ = 2.468 x10-8 for 4-fold sites and µ = 2.059 x10-8 for 0-fold sites. These mutation rates 

were used for the forward simulations. 

We examined three different models of population history for canids. First, we used the 

demographic model for wolves and dogs inferred in Freedman et al. (6) to simulate genetic 

variation that mimics the demographic history of wolves, village dogs, and breed dogs (SI 

Appendix, Table S3). Because we assumed a per-base pair per-generation neutral mutation rate 

of 2 x10-8, and Freedman et al. assumed a mutation rate of 1 x 10-8, we rescaled the Ne and 

divergence times from the Freedman et al. study. Breed dogs were assumed to have been formed 

100 generations ago to be consistent with the historical records and previous work (32, 33). This 

breed formation was modeled as a decrease in population size. We explored different realistic 

effective population sizes for the most recent (around 2,500) generations in all populations to 

assess their effect on neutral heterozygosity and the ratio of nonsynonymous to neutral site 

heterozygosity. The values shown in SI Appendix, Table S3 show the final parameter values 

used in the simulations. Our second scenario also used the Freedman et al. (6) demographic 

model as a backbone. But, here we increased the effective population size in the second epoch 

from 44,993 to 60,000 individuals. As expected, this model showed higher values of neutral 

heterozygosity. The parameters of this model are given in SI Appendix, Table S4. Finally, the 
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third model that we considered was that fit to village dogs and wolves by Wang et al. (9) (SI 

Appendix, Table S5). We made several simplifying assumptions and replaced exponential 

growth with piece-wise constant population sizes (SI Appendix, Table S5). 

Because the distribution of selective effects has not been estimated for new 

nonsynonymous mutations in dogs, the optimal parameters to use are not immediately clear. 

Thus, we examined different distributions of selective effects for new nonsynonymous mutations 

(SI Appendix, Table S6). First we used estimates from other species. We fully acknowledge the 

distribution of selective effects may vary across species and these values may not be appropriate 

for dogs. However, our goal here is to determine whether plausible distributions of selective 

effects combined with demography can generate the qualitative patterns seen in our data, rather 

than perform a rigorous assessment of model fit. First, we used the gamma distribution that had 

been fit to human nonsynonymous SNP data by Boyko et al. (34). Second, we used a gamma 

distribution that had been fit to nonsynonymous SNPs in 10 M. m. castaneus individuals (35). 

Importantly, because the ß (or scale) parameters of the gamma distribution are typically 

estimated as the population scaled selection coefficients (2Ns), we converted values of 2Ns 

drawn from the distribution into values of s by dividing by twice the relevant population size (SI 

Appendix, Table S6).  

However, we found that both of these distributions of selective effects did not match the 

regression parameters relating the 0-fold/4-fold ratio and neutral heterozygosity for the observed 

data (SI Appendix, Fig. S7). In particular the Boyko et al. (34) model from humans predicted a 

0-fold/4-fold ratio that was too low compared to our data. This suggests that our data contains 

more nearly neutral (|s| < 0.0001) mutations than had been estimated from humans. Models 

including a few percent more mutations with |s|  < 0.0001 better fit the observed data. The 
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Halligan et al. mouse (35) model (SI Appendix, Table S6), which includes more mutations with s 

< 0.0001, better matches the observed 0-fold/4-fold ratio in dogs, but does not have a steep 

enough slope. This model contains too few moderately deleterious mutations  (0.0001 < |s|  < 

0.01) that could be effectively removed by selection from the wolf population, but persist due to 

drift in dogs.  

There are several possible reasons for this lack of fit of previous models to our data. First, 

the distribution of selective effects could be different in canids than in humans and mice. The 

human and mouse distributions appear to differ from each other (SI Appendix, Table S6), 

supporting the notion that this distribution may not be constant across species. Second, our 

simulations used to generate the relationship between the 0-fold/4-fold heterozygosity ratio and 

neutral heterozygosity assume that all variants are independent of each other. If the real data 

includes substantial Hill-Robertson effects, then the data could differ from our simulations, even 

when the correct distribution of selective effects was used. Third, the distribution of selective 

effects may differ between dogs and wolves, perhaps because of domestication. If more new 

genetic variants in dogs became neutral after domestication, they may be able to drift to higher 

frequency, increasing the 0-fold/4-fold ratio. More detailed work on the distribution of selective 

effects in dogs and wolves is needed to distinguish among these possibilities. 

Because previously published distributions of selective effects appeared to not match the 

observed data, we explored several additional custom gamma distributions (SI Appendix, Table 

S6). We found that models including a greater proportion of weakly deleterious (|s|  < 0.001) and 

fewer strongly deleterious (|s|  > 0.01) mutations provided a better fit to the data. In particular, a 

gamma distribution with a shape parameter of 0.3 and scale parameter of 0.05 (in terms of s) 

predicted regression coefficients intermediate between those seen in the low and high coverage 
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datasets (Fig. 1B) under the Freedman et al. demographic model shown in SI Appendix, Table 

S3. Under the Wang et al. demographic model (SI Appendix, Table S5), a gamma distribution 

with a shape parameter of 0.25 and scale parameter of 0.125 reasonably predicted the observed 

regression parameters (SI Appendix, Fig. S7).  While these distributions mimic the empirical 

patterns, other more complex distributions may be more biologically reasonable. As discussed 

above, further work on the distribution of selective effects is necessary to distinguish among 

these possibilities. 

We also performed a set of simulations where all mutations were recessive. Here we used 

the demographic models shown in SI Appendix, Table S3. We used two different distributions of 

selective effects, the gamma distribution inferred in Boyko et al. as well as our Gamma Test 2 

distribution. Overall, we found that the intercept of the regression of the 0-fold/4-fold 

heterozygosity ratio on neutral heterozygosity was higher with recessive effects than additive 

effects (compare SI Appendix, Fig S6 with SI Appendix, Fig S8). This finding is not surprising 

because, for the same distribution of s, recessive mutations are only selected against in the 

homozygous state and can thus drift up in frequency and persist in the population more easily 

than variants with additive effects. In contrast to the additive case, the slope of the regression 

was weakly positive when assuming fully recessive mutations. This result is in agreement with 

the recent theoretical findings of Balick et al. (36). Essentially, recessive alleles that survive 

during a bottleneck will have drifted to higher frequency and have a higher probability of being 

in the homozygous state compared to the same alleles in non-bottlenecked populations. When in 

the homozygous state, the recessive deleterious mutations can be removed by selection, leading 

to the decrease in the 0-fold/4-fold ratio in the bottlenecked population relative to the non-

bottlenecked population. Because these simulations do not match the patterns seen in our data, 
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and simulations including additive effects provide a better fit, we conclude that most segregating 

amino acid changing variants in dogs and wolves are probably not fully recessive. They may be 

fully additive, however. 

We used our forward simulations to explore whether genetic load is predicted to be 

higher in dogs than wolves. Specifically, we used the demographic parameters from the 

Freedman et al. demographic model (SI Appendix, Table S3) and the Custom Test 1 gamma 

distribution of selective effects (SI Appendix, Table S6). At the end of the simulation, we 

computed the additive genetic load from the segregating variants. The load for variant i was 

calculated as Li = 1−wi = 1− (1− 2qi (1− qi )sih − siqi
2 ) = siqi (1− qi )+ siqi

2 , assuming h=0.5. 

Assuming fitness effects are independent and additive across sites, the total genetic load due to m 

segregating deleterious mutations was calculated as Lm = Li
i=1

m

∑ . An additional component of the 

genetic load comes from variants which recently have become fixed in dogs or wolves. To assess 

the contribution of the recently fixed mutations, we tabulated the selection coefficients of 

mutations that fixed within the last 2480 generations. This time represents the recent history after 

dogs and wolves had split from each other. The total genetic load was computed summing the 

components from the segregating and fixed deleterious mutations. Overall, the genetic load is 

approximately 2-3% higher in dogs than wolves (Fig. 3D).  

Analysis of coding genetic diversity near vs. far from sweeps 

To examine patterns of deleterious variation surrounding selective sweeps, we focused on 

the 25 dog and 10 wolf high-coverage genomes where we had called genotypes using GATK (3, 

4). We assumed that the ancestral state was the allele present in the golden jackal. We used the 

same sweep regions as those determined in the original studies (10, 37). These regions 
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represented putative selective sweeps in the ancestral population of breed dogs, presumably 

related to domestication. We used LiftOver to convert the sweep coordinates to CanFam 3.1. 

We then examined four different summaries of genetic variation, Watterson’s θ, π, the 

average derived allele count per SNP, and the average number of derived alleles per 100 bp. We 

computed these four summaries of genetic variation for four categories of sites: 4-fold sites near 

sweeps, 4-fold sites not near sweeps, 0-fold sites near sweeps, and 0-fold sites not near sweeps.  

 Watterson’s θ per-site was calculated as: 

θW = S
1
ii=1

2n−1

∑
, 

where n is the number of diploids and S is the number of variant sites normalized by the size of 

the regions. Specifically, S for 0-fold sites near sweeps would be computed as: 

S =
I j

j=1

L

∑
L

, 

where L refers to the total number of 0-fold sites (both variant and invariant) in the sweep region 

and Ij represents an indicator function that equals 1 if the site is variable in at least one 

individual. Fig. 4 shows Watterson’s θ per 10 kb. 

 The average number of pairwise differences per site, π, was calculated for a specific 

category of sites (e.g., 0-fold sites in sweep regions) as: 

π =
2pj (1− pj )

j=1

L

∑
L

, 

where pj is the frequency of the derived allele in the sample at site j. We found that π was 

reduced within the sweep regions in dogs consistent with the expected signature of a selective 
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sweep. Specifically, π per site was 5.0 x 10-4 (95% CI: 4.8 x 10-4 – 5.2 x 10-4) within the sweep 

regions, compared to 6.5 x 10-4 (95% CI: 6.4 x 10-4 – 6.6 x 10-4) outside of them. We did not 

observe this reduction in wolves. In wolves π was 1.35 x 10-3 (95% CI: 1.32 x 10-3 – 1.37 x 10-3) 

at 4-fold sites within the sweep regions and was 1.25 x 10-3 (95% CI: 1.24 x 10-3 – 1.25 x 10-3) 

outside of the sweep regions. 

The average derived allele count per SNP (DAC_SNP), was calculated for a specific 

category of sites (e.g., 0-fold sites in sweep regions) as: 

DAC _SNP =
2n pj

j=1

L

∑
L

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

L

I j
j=1

L

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
2n pj

j=1

L

∑

I j
j=1

L

∑
, 

where n represents the  total number of individuals in the sample (n=25 for breed dogs, n=10 for 

wolves. In other words, this metric represents the average count of the derived allele, divided by 

the number of variable sites. Fig. 4B shows the DAC_SNP. 

The average number of derived alleles, or the derived allele count (DAC), was calculated 

for a specific category of sites (e.g., 0-fold sites in sweep regions) as: 

DAC =
2n pj

j=1

L

∑
L  . 

Fig. 4C shows the DAC per 100 bp.  

We found significantly more derived alleles (i.e. DAC was higher) per bp at 4-fold sites 

surrounding selective sweeps than in 4-fold sites across the rest of the genome (Fig. 4C). Models 

of selective sweeps, however, do not predict an increase in the total number of derived alleles. 

Rather, hitchhiking models predict that the derived allele count per SNP (DAC_SNP) will be 

elevated by hitchhiking. In other words, sweep regions are predicted to have fewer SNPs (lower 
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S), but those that are variable are predicted to have higher derived allele frequency, giving higher 

DAC_SNP. Consistent with this prediction, we found that DAC_SNP at 4-fold sites is 

significantly higher in surrounding the sweeps compared to the rest of the genome in dogs (Fig. 

4B).  

 Why is the DAC per 100 bp of 4-fold sites elevated surrounding the sweep? Two 

hypotheses are that the mutation rate is higher or that the level of selective constraint is lower in 

regions surrounding the sweeps than the rest of the genome (see next section for further 

discussion). Under the first hypothesis, regions having a higher mutation rate would tend to show 

more derived alleles than regions with a lower mutation rate. Note, the fact that Watterson’s θ 

and π are both reduced in the sweep regions could still be compatible with a higher mutation rate 

near the sweeps; the reduction in these estimators of diversity is simply due to the effect of the 

sweeps. Put another way, if the mutation rate in the sweep regions were to be the same as in the 

rest of the genome, then we would expect to see an even greater reduction in neutral diversity 

surrounding the sweeps. Importantly, whatever the cause, even if the sweep regions have higher 

mutation rates, they still show the expected signatures of sweeps in dogs but not in wolves. 

Specifically, finding that DAC_SNP is higher in sweep regions than non-regions cannot be 

explained by differences in mutation rate. Further, the enrichment of 0-fold variants in the sweep 

regions compared to the rest of the genome in dogs also cannot be explained by differences in 

mutation rates as this enrichment is significantly greater in dogs than wolves (SI Appendix, Fig. 

S14).  

 We chose to present analyses of the DAC per 100 bp because this statistic is a more 

meaningful statistic when considering potentially deleterious 0-fold variants. DAC provides an 

approximate summary of the burden of deleterious variants, or genetic load, contained in 



 36 

sequence surrounding the sweeps versus the rest of the genome. We found that sweep regions 

contained 1.2 derived 0-fold alleles per 100 bp, compared to 0.97 derived 0-fold alleles per 100 

bp (Fig. 4C). This suggests that the genetic load contributed by regions surrounding the sweep is 

1.26 fold greater per 100 bp than the genome wide background (Fig. 4C). Summary statistics of 

genetic variation within and outside of the sweep regions can be found in 

“DOG_jacknife_on_sweep_nonsweep_data.txt” (for dogs) and 

“WOLF_jacknife_on_sweep_nonsweep_data.txt” (for wolves) on Dryad 

(doi:10.5061/dryad.012s5). 

Consideration of additional factors leading to an enrichment of 0-fold variants in the sweep 

regions 

Curiously, levels of neutral and deleterious variation in wolves are higher in the sweep 

regions compared to the rest of the genome (SI Appendix, Fig. S12). This finding suggests that 

sweeps may preferentially occur in regions of the genome that have higher mutations rates, 

although the mean GC content of the sweep regions is similar to the rest of the genome (SI 

Appendix, Fig. S13). Alternatively, the sweep regions could have lower selective constraint and 

tolerate more amino acid changing mutations. Another possibility is that deleterious variants may 

be removed less effectively in wolves due to their linkage to other nearby selected variants (i.e., 

Hill-Robertson interference (38)). If these effects are greater in the sweep regions than across the 

rest of the genome, they may explain the increase in deleterious variation in the sweep regions in 

wolves. Hill-Robertson effects are seen most often in regions of the genome with low 

recombination rates (39, 40). Because the average recombination rate in the sweep regions (1.09 

cM/Mb; SI Appendix, Fig. S13) is similar to the genome-wide average (0.97 cM/Mb from (41)), 

we conclude that this is explanation is less likely. Lastly, the higher diversity in the sweep 
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regions in wolves could be due to an ascertainment bias. The sweep regions were initially 

ascertained through a comparison of dogs to wolves. Power to detect differences in genetic 

diversity between dogs and wolves may be greater for those regions of the genome showing 

higher levels of diversity in wolves. Whatever the mechanism for the increased variation in the 

sweep regions in the wolves, it is unlikely to explain the enrichment of deleterious variants in the 

sweep regions in dogs because the increase in the 0-fold to 4-fold ratio seen in the sweep vs. 

non-sweep regions is significantly stronger in the dogs than in the wolves (SI Appendix, Fig. 

S14).  

Another possibility is that the excess of amino acid variation surrounding the selective 

sweeps could be the direct targets of positive selection. However, hitchhiking of deleterious 

mutations is a better explanation. The amino acid changes considered in our analyses were not 

adaptive mutations fixed by hard selective sweeps because we only consider polymorphic amino 

acid changes and not fixed differences. Thus, in order for positive selection to explain the excess 

amino acid variation, it would have occurred via partial sweeps or polygenic adaptation acting on 

coding SNPs. Partial sweeps and polygenic adaptation, however, have a lower probability than 

hard sweeps of showing elevated XP-EHH values, which were used to ascertain sweeps, and 

patterns of diversity seen in Fig. 4 (42, 43)). Additionally, there is little evidence from previous 

studies of domestication loci to suggest that polygenic adaptation on coding SNPs in the main 

mechanism of adaptation during domestication. Large-effect mutations tend to be structural 

variants rather than coding SNPs (44, 45). Further, studies in humans and domesticated rabbits 

have reported greater effects of polygenic adaptation on noncoding rather than coding SNPs (46–

48). However, because coding SNPs may also play a role in polygenic adaptation (46, 49), we 
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cannot formally rule out the possibility that the enrichment of amino acid changing variants in 

the sweep loci in dogs has been driven by polygenic selection.  

Testing for overlap between Mendelian disease genes and genes located in selective sweeps 

We tested whether regions of the genome that have been implicated in selective sweeps 

are enriched for genes that cause Mendelian diseases. To do this, we used two different datasets 

of Mendelian disease genes. First, we used a set of 170 genes that were reported in the Online 

Mendelian Inheritance in Animals database 

(http://omia.angis.org.au/results/?search_type=advanced&gb_species_id=9615&characterised=y

es&result_type=gene) to cause Mendelian disease in dogs. We searched the IDs of these genes 

against a list of 18,514 autosomal genes on the CanFam3.1 dog genome assembly. 145 of the 

dog Mendelian disease genes were present in our list of 18,514 dog genes and were used for 

subsequent analyses.  

Second, to obtain a larger set of disease genes, we used genes implicated in Mendelian 

diseases in humans. Specifically, we examined genes reported on the Online Mendelian 

Inheritance in Man “morbidmap” (http://omim.org/). We restricted our analysis to those 

autosomal genes confidently identified as causing a Mendelian disease. Consequently, we 

excluded those entries starting with a “[]”, “{}”, or “?”. A total of 3,545 genes met these criteria. 

We then intersected these genes with our list of genes found in the dogs and found that 2,535 of 

the Mendelian disease genes were also found in dogs. This is the final set of genes used for 

subsequent analyses. 

We then intersected these data with three different sets of selective sweeps. First, we used 

the set of sweeps associated with domestication that are shared across breeds and were described 

above for the deleterious mutation analysis. Second, Akey et al. (50) identified 155 1-Mb 
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windows of the dog genome that showed unusually high levels of population differentiation 

across dog breeds. We used LiftOver to convert the coordinates of the sweep regions to 

CanFam3.1. 149 of the sweep regions were successfully converted and were used for subsequent 

analyses. We then examined which of our 18,514 dog genes overlapped with these 1-Mb sweep 

regions. If a gene had any degree of overlap with the sweep window, it was considered 

overlapping. Third, we used a set of 523 sweep regions identified by Vaysse et al. (51). Like 

those from the Akey et al. (50) study, these are putatively recent sweeps which occurred in a sub-

set of dog breeds. Specifically, we used the sweeps identified using their Si statistic, which is 

sensitive to regions of the genome with lower levels of heterozygosity. We took the regions of 

the genome from Supplementary Table 5 of their paper showing a FDR P-value < 0.05. We used 

LiftOver to convert the coordinates of the sweep regions from CanFam2 to CanFam3.1, resulting 

in 516 regions being successfully converted. Again, any of our 18,514 dog genes that overlapped 

with any portion of the sweep region were considered to be overlapping the sweep. 

We then intersected our list of Mendelian disease genes with the list of genes found in 

selective sweeps. We computed the expected number of overlapping genes as the expected 

number of successes for a hypergeometric distribution. Specifically,  

 

where n is the number of genes in the sweep regions, K is the number of Mendelian disease 

genes, and N is the total number of genes in the dataset (18,514). We then computed the 

probability of observing as many or more overlapping genes by chance alone. Lists of genes 

overlapping the sweep regions can be found in the 

“Gene_IDs_overlapping_sweep_regions.final.xlsx” file in Dryad (doi:10.5061/dryad.012s5). 

E[overlap]= n K
N
,
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Interestingly, we did not detect an enrichment of Mendelian disease genes in selective 

sweeps that occurred early during dog domestication (i.e., sweeps identified through comparison 

of dogs and wolves), perhaps suggesting that early and breed selective sweeps involve 

fundamentally different types of genes (SI Appendix, Table S8, Table S9). Genes selected for 

breed specific phenotypes tend to have large phenotypic effects, mirroring those responsible for 

Mendelian disease (52, 53). In contrast, selection of traits in early domestic dogs, before the 

science of selective breeding, likely operated on a more heterogeneous genetic base over a 

greater time period allowing for selection of genetic variants with smaller phenotypic effects. 

Alternatively, if the enrichment of Mendelian disease genes within dog sweeps was due to 

linkage of Mendelian disease genes to those controlling traits under artificial selection, our 

results indicate genes selected during domestication would be less likely to be linked to 

Mendelian disease genes. 

Another possible explanation for not detecting an enrichment of Mendelian disease genes 

in selective sweeps that occurred early during dog domestication could be lower statistical power 

for the ancient sweep regions (which had 711 genes within the sweep regions compared to 

around 1600 for the other sweeps). To test this, we performed simulations. Specifically, of the 

1663 genes located within the sweeps in the Vaysse et al study, 263 (15.81%) were also disease 

genes. In the smaller dataset of ancient sweeps, we found only 92 out of 711 genes in the sweep 

regions also were disease genes (12.94%). Assuming the same level of overlap between sweep 

genes and disease genes as seen in the Vaysse study, (i.e. p=15.81%), we wished to determine 

the probability of finding 92 or fewer overlapping genes out of a set of 711 genes. To do this, we, 

drew the number of genes within the sweep regions that overlapped with a disease gene from a 

binomial distribution with p=15.81% and n=711. We then tabulated the proportion of replicates 
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with <93 overlapping genes. We found about 2% of the simulation replicates had fewer than 93 

overlapping genes. We then repeated this experiment using the data from the Akey et al study. 

Here, of the 1632 genes in the sweep regions, 245 overlapped with disease genes (p=15.01%). 

When assuming p=15.01% and n=711, we found only 6-7% of the simulation replicates had <93 

genes in the sweep region also being disease genes. Thus, it is unusual to see a proportion of 

overlapping genes as small as or smaller than that observed in the ancient sweeps if we assume 

they have the same level of enrichment as the more recent sweeps. 

These results taken together strongly argue that there is a difference between the genes 

within the newer sweeps and the older sweeps. The lack of concordance across the different 

sweep datasets is unlikely to be due to limited power due to having a smaller set of ancient 

sweeps. Assuming that the ancient sweeps have the same degree of overlap with disease genes as 

the modern sweeps, it is very unlikely (<10%) to see as little overlap as observed in our ancient 

sweeps.  

Testing which genes have the greatest enrichment of 0-fold variants in dogs vs. wolves 

We tested whether individual genes showed differential 0-fold to 4-fold ratios in dogs 

and wolves. To do this, we tabulate the number of 0-fold and 4-fold SNPs segregating in each 

gene in the 25 high-coverage dogs and the 10 high-coverage wolves. Those 614 genes containing 

at least 10 coding SNPs in either dogs or wolves were analyzed further. We focused on genes 

containing at least 10 variants because of lower statistical power for genes with fewer SNPs. We 

then applied Fisher’s exact test to each of these 614 genes. The 10 genes with the smallest P-

value are shown in SI Appendix, Table S2. None of these genes pass a Bonferroni correction for 

the number of genes analyzed, suggesting that the genome-wide enrichment of 0-fold to 4-fold 

variants in dogs relative to wolves is not confined to specific regions. However, we note that, due 
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to limited numbers of coding SNPs per gene, the gene-based analysis likely has low statistical 

power. 

We applied a similar strategy to test which selective sweep regions showed the greatest 

difference in the 0-fold to 4-fold ratio between dogs and wolves. Here we tabulated the number 

of 0-fold and 4-fold SNPs within each sweep region in dogs and wolves. We then applied 

Fisher’s exact test to the counts from those sweep regions containing at least 10 coding SNPs in 

dogs or wolves.  

The single sweep with the most extreme enrichment of amino acid changes is on 

chromosome 30, the second highest outlier region in a genome-wide selection scan (10), which 

contains a gene implicated in memory and behavior (RYR3). In dogs, this region contains 12 

amino acid changing SNPs, but only 4 silent variants. In wolves there are 24 and 25 amino acid 

changing and silent variants, respectively.  
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Fig. S1: Comparison of the read-based estimator of heterozygosity (FourSite) to the 
estimates based on GATK for high coverage individuals.  
Lines denote the diagonal. Each blue point represents a breed dog. Each red point represents a 
wolf. Note the close correspondence between the estimates of heterozygosity obtained using 
FourSite to those from GATK. Importantly, only 4 reads per individual per site were used with 
FourSite while all the reads that passed our quality filters were used for calling genotypes with 
GATK. 
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Fig. S2: Estimated heterozygosity vs. average read depth.  
Each point represents one of the 90 genomes analyzed in our study. Breed dogs are in blue, 
village dogs in green, and wolves in red. Note that the average coverage of village dogs is lower 
than that of breed dogs and wolves, but this does not affect the estimates of heterozygosity. 
Estimates of heterozygosity for all genomes are made using a subset of 4 reads per site analyzed 
using the FourSite approach. Neutral heterozygosity (r = -0.09, P = 0.40), 4-fold heterozygosity 
(r = 0.01, P = 0.95), and 0-fold heterozygosity (r = -0.08, P = 0.45) show no correlation with 
coverage. There is a weak negative correlation between the ratio of 0-fold to 4-fold 
heterozygosity (r = -0.24; P = 0.024; see SI Text).  
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Fig. S3: Principal components analysis (PCA) of the 25 high-coverage genomes along with 
Affymetrix SNP genotype data from 145 dogs and 64 wolves.  
(A) First two PCs. Open circles denote data from SNP genotypes. Filled circles denote the high-
coverage genomes. Note that the sequenced dogs cluster with the genotyped dogs and the 
sequenced wolves cluster with the genotyped wolves. The cluster of points with elevated values 
on PC 2 are the boxers. (B-F) Boxplots of the top 5 PCs for dogs and wolves. Boxes denote the 
ranges of the PCs from the genotyped dogs. Colored points denote the sequenced genomes. 
Across all 5 PCs, the sequenced dogs are close to, or within the range of the genotyped dogs. The 
fact that individuals cluster based on population structure and not by assay suggests that batch 
effects, sequencing errors, or differences between genotyping and sequencing make a negligible 
contribution to overall patterns of genetic variation in our data. Population abbreviations for dogs 
are as follows: BSJ: Basenji, BC: Border Collie, BXR: Boxer, GR: Golden Retriever, JT: Jack 
Russell Terrier, LR: Labrador Retriever, PC: Pembroke Welsh Corgi, ST: Scottish Terrier, SD: 
Scottish Deerhound, SP: Standard Poodle, SS: Shetland Sheepdog, WT: West Highland White 
Terrier. Abbreviations for wolf populations are CH: China, NA: North America, IR: Iran. 
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Fig. S4: The ratio of 0-fold to 4-fold heterozygosity is negatively correlated with neutral 
genetic diversity. 
(A) This analysis uses 35 high coverage genomes treated as though they have lower-coverage. 
We sampled 4 reads per site and estimated heterozygosity using FourSite. The solid line denotes 
the best-fit linear regression line (Intercept = 0.292, slope = -28.59, r = 0.795, P < 2 x 10-8). (B) 
This analysis considers breed dogs (blue) and wolves (red) separately. Heterozygosity was 
computed using four reads per individual. The dashed line denotes the best-fit linear regression 
line (Intercept = 0.30, slope = -31.4, r = -0.674, P < 6 x 10-10) for both breed dogs and wolves 
together. Breed dogs show a slight negative relationship (solid line over blue points; Intercept = 
0.29, slope = -17.82, r = -0.30 P = 0.043) while wolves do not (solid line over red points; 
Intercept = 0.26, slope = -8.75, r = -0.185, P = 0.45). However, due to the limited sample size, 
statistical power is diminished within each group. (C) This analysis filters CpG sites (see SI 
Text). Heterozygosity was computed using four reads per individual. Error bars denote 95% 
confidence intervals on the trimmed median for each population group. The solid line denotes 
the best-fit linear regression line (Intercept = 0.350, slope = -39.09, r = -0.468, P < 4 x 10-6). (D) 
This analysis filters sites near a selective sweep (see SI Text). Heterozygosity was computed 
using four reads per individual. Error bars denote 95% confidence intervals on the trimmed 
median for each population group. The solid line denotes the best-fit linear regression line 
(Intercept = 0.294, slope = -23.50, r = -0.430, P < 3 x 10-5). 
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Fig. S5: 0-fold/4-fold ratio of the average pairwise differences is significantly higher in dogs 
than wolves.  
This analysis considers the 25 high-coverage breed dogs and the 10 high-coverage wolves. We 
computed the average number of pairwise differences at 0-fold sites and 4-fold sites. Regions 
implicated in selective sweeps (see text) were excluded from this analysis. Error bars represent 
95% confidences intervals calculated from estimates of the standard error obtained from 
jackknifing over chromosomes. Small dots show the estimates for each individual jackknife 
replicate. Note that this analysis does not assume that individuals are independent of one another 
and appropriately accounts for shared genealogical history between individuals. 
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Fig. S6: Ratio of 0-fold to 4-fold heterozygosity vs. neutral heterozygosity from the forward 
simulations under different models of demography and selection.  
Rows denote the different demographic models. “Freedman” refers to the Freedman et al. model 
(SI Appendix, Table S3). “Freedman large” refers to the Freedman et al. model, but increasing 
the size of the ancient population size (SI Appendix, Table S4). “Wang” denotes our 
implementation of the model fit in Wang et al. (SI Appendix, Table S5). Columns denote 
different distributions of selective effects (SI Appendix, Table S6). Lines are from the best-fit 
linear regression. Blue points denote breed dogs, green points denote village dogs, and red points 
represent wolves. In all cases, models of demography and selection predict a negative 
relationship between the ratio of 0-fold to 4-fold heterozygosity vs. neutral heterozygosity. 
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Fig. S7: Models of purifying selection and demography predict a similar negative 
relationship between 0-fold/4-fold heterozygosity and neutral heterozygosity as seen in the 
high quality genomes.  
Rows denote the different demographic models (SI Appendix, Tables S3-5). Columns denote 
different distributions of selective effects (SI Appendix, Table S6). Dark solid black lines are 
from the best-fit linear regression of the simulations under the particular model (e.g., best fit 
lines in SI Appendix, Fig. S6). The gray shaded region denotes the 95% CI on the linear 
regression line calculated from the 35 high quality genomes (e.g., the data shown in Fig. 1B). 
The dark blue and red points represent the trimmed medians from the observed data from the 
breed dogs and wolves, respectively. The whiskers denote 95% CIs on the trimmed medians. 
Note that the Gamma Test 2 distribution of selective effects best fits the observed relationship 
between 0-fold/4-fold heterozygosity and neutral heterozygosity under the Freedman 
demographic model. The Gamma Test 1 distribution also provides a good fit under the Wang 
demographic model. 
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Fig. S8: Models with recessive effects predict a positive relationship between 0-fold/4-fold 
heterozygosity and neutral heterozygosity.  
Breeds dogs are in blue, village dogs in green, and wolves in red. All simulations assumed h=0 
and the demographic parameters shown in SI Appendix, Table S3. Columns denote different 
distributions of selective effects (SI Appendix, Table S6). The shaded gray lines denote the 
regression parameters from the simulations including additive effects. The clouds of blue, green, 
and red points denote the results of the simulations assuming recessive effects.  
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Fig. S9: Estimating heterozygosity using one chromosome from each of two individuals 
removes the effects of recent inbreeding.  
(A) Inbreeding results in an increase in the probability that two chromosomes within an 
individual share a recent common ancestor with each other than with a chromosome in a 
different individual (i.e. chromosomes of the same color have a higher probability of coalescing 
with each other than with chromosomes of a different color). This will lead to a reduction in 
heterozygosity (left panel). By computing heterozygosity from one read from each individual 
(i.e. from different colored chromosomes, right panel), we will remove this effect of inbreeding.  
(B) Forward simulations using the breed dog demographic model including population 
bottleneck along with 100 generations of inbreeding (model from Freedman et al., SI Appendix, 
Table S3) show a slight negative correlation between the ratio of 0–fold to 4-fold heterozygosity 
and neutral heterozygosity. This suggests recent inbreeding in certain dog breeds may slightly 
increase the 0-fold to 4-fold ratio. Lines denote the regression between the ratio of 0–fold to 4-
fold heterozygosity vs. neutral heterozygosity. (C) Same simulations as in (B), except here 
heterozygosity is computed using one chromosome from each of two dogs. Sampling from two 
dogs eliminates the reduction in heterozygosity due to recent inbreeding as well as the weak 
negative correlation seen in (B).  
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Fig. S10: Additional comparisons of the burden of deleterious genotypes per individual 
using the high-quality genomes.  
Homozygous derived refers to the number of genotypes per individual that are homozygous for 
the derived allele when using the golden jackal to assign ancestral state. The total number of 
derived alleles counts each heterozygous genotype once and each homozygous derived genotype 
twice. (A) Nonsynonymous variants with GERP score >4. Here, the Tibetan wolf is included. 
There is a 2.5% increase in the number of derived deleterious alleles in dogs compared to wolves 
(P<0.019). (B) Nonsynonymous variants that are predicted to be deleterious based on the Miyata 
classification. Note the 2.3% increase of derived deleterious alleles in dogs compared to wolves 
(P<0.001). (C) Distribution of GERP score load per individual when including the Tibetan wolf. 
Dogs have a significantly higher GERP score load than do wolves (P<0.046). (D) Number of 
derived synonymous alleles per individual before correction for under calling heterozygotes 
(P<0.003). Unless otherwise noted above, P<6 x 10-5 for all comparisons using a Mann-Whitney 
U test (SI Appendix, Table S7). 
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Fig. S11: Comparison of the burden of deleterious genetic variation between breed dogs 
and wolves based on high-quality genomes when removing selective sweep regions.  
“Homozygous derived” refers to the number of genotypes per individual that are homozygous 
for the derived allele when using the golden jackal to assign ancestral state. The total number of 
derived alleles is based on counting each heterozygous genotype once and each homozygous 
derived genotype twice after correction for the higher false-negative rate for heterozygous 
genotypes. Small points denote the number of high-coverage genomes used for each species (n = 
25 for breed dogs, n = 9 for wolves). (A) Nonsynonymous variants that are predicted to be 
deleterious based on having a GERP score >4. Breed dogs have approximately 2.9% more 
derived deleterious alleles than wolves. (B) GERP score load for each individual. P < 0.008 for 
all comparisons between dogs and wolves using a Mann-Whitney U test unless otherwise noted 
(SI Appendix, Table S7). 
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Fig. S12: Genetic variation in wolves surrounding selective sweeps identified in dogs.  
(A) Watterson’s θ, an estimate of genetic diversity based on the number of variants, regardless of 
their frequency. (B) The average derived allele count per SNP. (C) Average number of derived 
alleles per 100 bp (considering invariant positions). Each variant site is counted the number of 
times its derived allele appears in the sample. Error bars are 95% confidence intervals obtained 
by jackknifing over chromosomes. 4-fold denotes those changes in the coding sequence that do 
not change the amino acid and are putatively neutral. Note that both 4-fold (putatively neutral) 
and 0-fold variants (possibility deleterious) are elevated near the breed dog sweeps compared to 
the rest of the genome. This finding may be explained by the sweep regions having a higher 
mutation rate or by having a reduction in selective constraint. In both scenarios, more genetic 
variation may be available on which positive natural and artificial selection could act. Further, 
under this scenario, there would be greater neutral and deleterious variation expected near 
sweeps. 
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Fig. S13: Properties of 421 selective sweep regions.  
(A) Distribution of recombination rates. Recombination rates were taken from those estimated in 
(54). The average recombination rate in the selective sweep regions is 1.09 cM/Mb, similar to the 
genome wide-average of 0.97 cM/Mb reported in ref. (41). (B) Distribution of GC content. 
Estimates of GC content were taken from the “gc5BaseBw” table on the CanFam 3.1 build on 
the UCSC Genome Browser. The average GC content in the selective sweep regions is 41.7%, 
similar to the genome wide-average of 41% reported in (55), and seen for random regions of 
chromosome 14. 
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Fig. S14: Ratio of genetic diversity near sweeps vs. the rest of the genome in breed dogs and 
wolves.  
(A) Watterson’s θ, an estimate of genetic diversity based on the number of variants, regardless of 
their frequency. (B) The average derived allele count per SNP. (C) Average number of derived 
alleles per 100 bp (considering invariant positions). Each variant site is counted the number of 
times its derived allele appears in the sample. Error bars are 95% confidence intervals obtained 
by jackknifing over chromosomes. Note that the ratio is significantly > 1 for 4-fold diversity in 
wolves indicating that the sweeps have more putatively neutral variation than the rest of the 
genome. In breed dogs, however, diversity (A) is reduced near sweeps. Wolves show increased 
deleterious diversity (A) near the sweeps while dogs show no change or a reduction. However, 
the increase in the total number of derived 0-fold alleles near the sweeps is significantly higher in 
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the breed dogs than the wolves. Finally, the enrichment of 0-fold to 4-fold variants is 
significantly higher in the dogs than the wolves for all summaries of genetic variation. This 
finding suggests that a higher mutation rate near the sweeps or reduction in selective constraint 
cannot by itself explain the enrichment of putatively deleterious variations near the sweeps in 
breed dogs compared to wolves. Instead, this pattern can be explained by hitchhiking of 
deleterious variations with the sweep. 



 
!

63 

Table S1: Comparison of the regression parameter estimates across different data sets 
Dataset Intercept SE Lower CI Upper CI Slope SE Lower CI Upper CI 

High coverage* 0.2759 0.0035 0.2691 0.2827 -21.4348 3.0244 -15.5069 -27.3627 
Foursite on 

high coverage# 0.2921 0.0048 0.2827 0.3016 -28.5896 3.7965 -21.1484 -36.0308 

FourSite low-
coverage 

 
0.3010 0.0063 0.2887 0.3134 -29.0043 4.8938 -19.4126 -38.5961 

 
*Denotes the estimates from the 35 high coverage genomes where genotypes were called using GATK. 
#Denotes the estimates from the 35 high coverage genomes that were treated analyzed as low-coverage genomes. We sampled four 
reads per site and estimated heterozygosity using FourSite.  
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Table S2: Top 10 genes showing the greatest difference in the number of 0-fold and 4-fold variants between dogs and wolves  

Ensemble Transcript 
ID Gene 

# 0-fold 
SNPs in 

dog 

# 0-fold 
SNPs 
wolf 

# 4-fold 
SNPs in 

dog 

# 4-fold 
SNPs 
wolf 

0-
dog)/0-

wolf 

4-
dog)/4-

wolf 
P-value 

ENSCAFG00000015228 vWF 10 7 0 8 1.43 0.00 0.0077 
ENSCAFG00000003887 APOB 18 16 3 14 1.13 0.21 0.0188 
ENSCAFG00000015314 UBR4 4 3 1 11 1.33 0.09 0.0379 

n/a  11 4 0 3 2.75 0.00 0.0429 
ENSCAFG00000009561 DNMBP 0 6 5 4 0.00 1.25 0.0440 
ENSCAFG00000013255 MKI67 9 24 8 5 0.38 1.60 0.0441 
ENSCAFG00000023780 MUC5B 19 18 8 23 1.06 0.35 0.0466 
ENSCAFG00000008686 CSMD1 7 2 7 13 3.50 0.54 0.0502 
ENSCAFG00000013453 Uncharacterized 0 9 3 4 0.00 0.75 0.0625 
ENSCAFG00000017941 CYP1A2 11 6 1 5 1.83 0.20 0.0686 

“0-dog/0-wolf” denotes the ratio of the number of 0-fold variants in dogs to the number of 0-fold variants in wolves. “4-dog/4-wolf” 
denotes the ratio of the number of 4-fold variants in dogs to the number of 4-fold variants in wolves. “P-value” denotes the P-value 
from Fisher’s exact test for homogeneous 0-fold to 4-fold ratios between dogs and wolves. 
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Table S3: Forward simulation parameters based on the Freedman et al. demographic model  
 

 

 

 

 

 
Epoch 1 denotes the ancestral population size. Epoch 4 denotes the current effective population size for wolves and village dogs while 
Epoch 5 represents the current effective population size for breed dogs. This demographic model was used for the regression line 
presented in Fig. 1B. 
 

 

 

  

 Wolves Village Dogs Breed Dogs 
 Number of 

chromosomes 
(2Ne) 

Number of 
generations 

Number of 
chromosomes 

(2Ne ) 

Number of 
generations 

Number of 
chromosomes 

(2Ne ) 

Number of 
generations 

Epoch 1 18,169 145,352 18,169 145,352 18,169 145,352 
Epoch 2 44,993 63,898 44,993 63,898 44,993 63,898 
Epoch 3 24,000 237 1999 347 1999 347 
Epoch 4 30,000 2243 15,000 2133 8000 2033 
Epoch 5 - - - - 1000 100 
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Table S4: Forward simulation parameters based on the Freedman et al. model with larger ancestral population sizes  
 Wolves Village Dogs Breed Dogs 
 Number of 

chromosomes 
(2Ne) 

Number of 
generations 

Number of 
chromosomes 

(2Ne) 

Number of 
generations 

Number of 
chromosomes 

(2Ne) 

Number of 
generations 

Epoch 1 18,169 145,352 18,169 145,352 18,169 145,352 
Epoch 2 60,000 63,898 60,000 63,898 60,000 63,898 
Epoch 3 2400 237 1999 347 1999 347 
Epoch 4 30,000 2243 15,000 2133 8000 2033 
Epoch 5 - - - - 1000 100 
Epoch 1 denotes the ancestral population size. Epoch 4 denotes the current effective population size for wolves and village dogs while 
Epoch 5 represents the current effective population size for breed dogs. 
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Table S5: Forward simulation parameters based on the Wang et al. model  
 Wolves Village Dogs Breed Dogs 
 Number of 

chromosomes 
(2Ne) 

Number of 
generations 

Number of 
chromosomes 

(2Ne) 

Number of 
generations 

Number of 
chromosomes 

(2Ne) 

Number of 
generations 

Epoch 1 35,000 280,000 35,000 280,000 35,000 280,000 
Epoch 2 33,020 3556 5666 2556 5666 2,556 
Epoch 3 - - 11,332 1000 11,332 900 
Epoch 4 - - - - 200 100 

Epoch 1 denotes the ancestral population size. Epoch 2 denotes the current effective population size for wolves, Epoch 3 is the current 
effective population size for village dogs and Epoch 4 represents the current effective population size for breed dogs. 



 
!

68 

Table S6: Parameters for the gamma distributions of selective effects on new mutations used in forward simulations of 
demography and selection   

Model α β N % mutations 
s<0.0001 

% mutations 
0.0001<s < 0.001 

% mutations 
0.001<s<0.01 

% mutations 
s>0.01 

Boyko (34) 0.184 319.8626 1000 27.89 14.68 21.90 35.54 
Mice (35) 0.11 8,636,364 106 32.6 9.40 12.10 45.86 
Gamma Test 1 0.25 250 10000 33.00 24.86 32.91 9.23 
Gamma Test 2 0.3 100 10000 34.30 31.44 32.06 2.21 

 

α denotes the shape parameter of the distribution of selective effects while β denotes the scale parameter. N refers to the population 
size used to scale the β parameter. Remaining columns provide the proportions of new mutations having different selection 
coefficients. The regression line from the Gamma Test 2 distribution is shown in Fig. 1B. 
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Table S7: P-values for Mann-Whitney U-tests comparing numbers of genotypes, derived 
alleles and corrected derived alleles (see ‘Accumulation of deleterious derived alleles’) per 
individual between dogs and wolves  

!
 Note, P-values for differences in the number of heterozygous genotypes are the same both 
before and after correction for false-negative genotype calls. 
 

 

 

 
Observed 
number of 

heterozygous 
genotypes 

Observed 
number of 

homozygous 
genotypes 

Observed 
number of 

derived 
alleles 

Corrected 
number of 

derived 
alleles 

Omitting Tibetan wolf     

Synonymous 7.245 x 10-7 3.813 x 10-8 0.0023 0.3354 

Nonsynonymous 1.716 x 10-6 3.813 x 10-8 4.75 x 10 -4 0.0092 

Miyata damaging 2.555 x 10-6 3.813 x 10-8 3.699 x 10-6 9.851 x 10-4 

GERP deleterious 1.838 x 10-5 3.813 x 10-8 2.129 x 10-4 0.0019 

GERP deleterious, 
omitting sweeps 1.838 x 10-5 3.813 x 10-8 2.129 x 10-4 0.0023 

4-fold 1.716 x 10-6 3.813 x 10-8 0.0026 0.0451 

0-fold 1.716 x 10-6 3.813 x 10-8 0.0030 0.0451 

Including Tibetan wolf     

Synonymous 3.359 x 10-5 9.478 x 10-6 0.009457 0.4604 

Nonsynonymous 1.609 x 10-5 3.987 x 10-6 0.006567 0.0496 

Miyata damaging 1.239 x 10-5 2.114 x 10-6 1.239 x 10-5 0.001944 

GERP deleterious 5.310 x 10-5 5.382 x 10-6 0.0045 0.0186 

4-fold 6.622 x 10-5 2.931 x 10-6 0.001944 0.041 

0-fold 2.647 x 10-5 3.987 x 10-6 0.006567 0.070 
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Table S8: Overlap between dog Mendelian disease genes and selective sweeps  

Sweep dataset 
Number of 

genes in 
sweeps 

Observed 
number of 

disease genes in 
sweeps 

Expected 
number of 

disease genes in 
sweeps 

P-value for 
enrichment 

Ancient (10, 37) 711 3 5.6 0.921 
Recent (50) 1632 18 12.8 0.087 
Recent (51) 1663 17 13.0 0.155 

 
This analysis compares the overlap between genes near selective sweeps and 145 genes 
implicated in dog Mendelian disease. This analysis includes a total of 18,514 genes. The 
expected number of genes in sweeps was computed using a hypergeometric distribution (See 
Methods). 
 
Table S9: Overlap between human Mendelian disease genes and dog selective sweeps  

Sweep dataset 
Number of 

genes in 
sweeps 

Observed 
number of 

disease genes in 
sweeps 

Expected 
number of 

disease genes in 
sweeps 

P-value for 
enrichment 

Ancient (10, 37) 711 92 97.4 0.740 
Recent (50) 1632 245 223.5 0.057 
Recent (51) 1663 263 227.7 0.005 

!
This analysis compares the overlap between genes near selective sweeps and 2,535 genes 
implicated in human Mendelian disease. This analysis includes a total of 18,514 genes. The 
expected number of genes in sweeps was computed using a hypergeometric distribution (See 
Methods). 
 


