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SUMMARY

Saber-toothed cats (Machairodontinae) are among
the most widely recognized representatives of the
now largely extinct Pleistocene megafauna. How-
ever, many aspects of their ecology, evolution, and
extinction remain uncertain. Although ancient-DNA
studies have led to huge advances in our knowledge
of these aspects of many other megafauna species
(e.g., mammoths and cave bears), relatively few
ancient-DNA studies have focused on saber-toothed
cats [1–3], and they have been restricted to short
fragments ofmitochondrial DNA. Herewe investigate
the evolutionary history of two lineages of saber-
toothed cats (Smilodon andHomotherium) in relation
to living carnivores and find that the Machairodonti-
nae form a well-supported clade that is distinct
from all living felids. We present partial mitochondrial
genomes from one S. populator sample and three
Homotherium sp. samples, including the only Late
Pleistocene Homotherium sample from Eurasia [4].
We confirm the identification of the unique Late
Pleistocene European fossil through ancient-DNA
analyses, thus strengthening the evidence that
Homotherium occurred in Europe over 200,000 years
later than previously believed. This in turn forces
a re-evaluation of its demography and extinction
dynamics. Within the Machairodontinae, we find a
deep divergence between Smilodon and Homothe-
rium (�18million years) but limited diversity between
the American and European Homotherium speci-
3330 Current Biology 27, 3330–3336, November 6, 2017 ª 2017 Else
mens. The genetic data support the hypothesis
that all Late Pleistocene (or post-Villafrancian)
Homotherium should be considered a single spe-
cies, H. latidens, which was previously proposed
based on morphological data [5, 6].

RESULTS AND DISCUSSION

Homotherium and Smilodon were large-bodied predators with

widespread distributions. The Holarctic genus Homotherium

has Old World origins, with Pleistocene forms in Eurasia gener-

ally being assigned to H. latidens and those in North America

being assigned to H. serum [7, 8]. The New World genus

Smilodon is thought to have evolved from Old World dirk-

toothed cats of the genus Megantereon, which may have

dispersed into the Americas during the Pliocene (Blancan).

Two Late Pleistocene (Rancholabrean) Smilodon species are

recognized, with S. fatalis being confined to areas south of the

continental ice sheets in North America, whereas the contempo-

rary, larger, andmore robustS. populatorwas restricted to South

America. Despite their widespread occurrence, Homotherium

and Smilodon remains are uncommon and generally fragmen-

tary in the fossil record, except in rare cases (e.g., [9, 10]).Homo-

therium in particular is generally only represented by isolated

cranial or dental elements, leading to many uncertainties about

their taxonomy, demography, and extinction dynamics. Both

Homotherium and Smilodon survived in North America until the

Late Pleistocene and went extinct alongside many other mega-

fauna species on the continent (e.g., mammoths and giant sloths

[11]). In Eurasia, however, Homotherium is generally thought to

have gone extinct much earlier, during the Middle Pleistocene

around 300,000 years ago [12–15]. To date, there is only a

single dated Late Pleistocene Homotherium fossil recovered in
vier Ltd.
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Table 1. Sample Details of Smilodon and Homotherium

Sample

Code Species Location Age

Dating Facility

and Number

Skeletal

Element Collection Reference

SP1007 Homotherium

latidens

North Sea,

the Netherlands

31,300 ± 400 Utrecht University

AMS facility: 10456

mandible Rotterdam [4]

SP1007 Homotherium

latidens

North Sea,

the Netherlands

31,300 ± 400 Utrecht University

AMS facility: 10999

mandible Rotterdam [4]

SP1007 Homotherium

latidens

North Sea,

the Netherlands

26,900 ± 400 Utrecht University

AMS facility: 10908

mandible Rotterdam [4]

SP1007 Homotherium

latidens

North Sea,

the Netherlands

26,700 ± 240 Utrecht University

AMS facility: 11064

mandible Rotterdam [4]

SP1007 Homotherium

latidens

North Sea,

the Netherlands

28,100 ± 220 Utrecht University

AMS facility: 11000

mandible Rotterdam [4]

SP1007 Homotherium

latidens

North Sea,

the Netherlands

27,650 ± 280 Utrecht University

AMS facility: 11065

mandible Rotterdam [4]

SP1714 Homotherium

latidens

60-mile, Yukon

Territory, Canada

>56,500 Oxford Radiocarbon

Accelerator: 10082

left humerus Canadian Museum

of Nature, Ottawa,

CMN46442

[3]

YG 439.38 Homotherium

latidens

Dominion Creek,

Dawson City,

Yukon Territory

>47,500 Stafford,

UCIAMS: 142835

left humerus Yukon government

collection, Whitehorse

Figure S1;

Table S2

ZMA20.042 Smilodon

populator

Ultima Esperanza,

Chile

11,335 ± 30 Stafford,

UCIAMS: 142836

left tibia Kruimel collection,

Naturalis, Leiden

�

Sample details for the Smilodon andHomotherium samples included in this study. In this table, only samples for which a (partial) mitogenome could be

reconstructed are listed. All radiocarbon ages are given in uncalibrated years before present. See also Figure S1 and Tables S1–S4.
Europe [4]. We used ancient-DNA techniques to retrieve and

analyze genetic data from this individual and compared the

specimen to two North American Homotherium specimens and

one South American Smilodon specimen, in order to investigate

the evolutionary history of the Machairodontinae and the taxon-

omy, demography, and phylogeography of Homotherium.

Evolutionary History of Machairodontinae
Mitochondrial genome data (mitogenomes) were generated for

one Smilodon and three Homotherium specimens using hybrid-

ization capture and were assembled via both an iterative map-

ping approach using three different mitochondrial sequences

as initial reference seeds and a regular read alignment approach

(for more details, see STAR Methods; Figure S1; Table S2). The

Smilodon sample was collected in Chile and is dated to 11,335

years (carbon dates are given as uncalibrated 14C years; Table 1).

Two Homotherium fossils were collected in the Yukon Territory

(northwest Canada), and both proved to be beyond the limits

of radiocarbon dating (>50,000 years; Table 1) [3]. The European

Homotherium was recovered from the North Sea and is dated to

�28,000 years (Table 1) [4]. The recovered mitogenomes had an

average depth of 193 (7–353), resulting in partial mitogenome

sequences spanning 44.5%–92.4% of the expected sequence

length (Table S1). The recovered Machairodontinae mitoge-

nomes were aligned with 22 additional carnivoran mitogenomes

retrieved from GenBank and subjected to maximum-likelihood

(ML) and Bayesian phylogenetic analyses (Table S3). These

analyses confirm the placement of Smilodon and Homotherium

as sister lineages in the subfamily Machairodontinae with 94%

bootstrap support (BS) and a Bayesian posterior probability

(BPP) of 0.99, basal to all extant Felidae species (100%

BS, 1.0 BPP; Figure 1; Figure S2). The mitogenome-based
phylogenetic relationship between the Homotherium and Smilo-

don data is in agreement with analyses based on morphological

evidence [8] and shorter mitochondrial sequences [1, 3]. We then

used a time-calibrated Bayesian analysis to estimate divergence

times on the ML topology with multiple fossil calibration points

(Table 2). The estimated median time to the most recent com-

mon ancestor (tMRCA) for all Felidae was 20 million years ago

(95% credibility interval: 18.2–22.0 millions years [Ma]). This is

in line with earlier estimates of 14.5–21.5 Ma [3]. The tMRCA

for extant Felids was found to be 14.2 Ma, also similar to other

estimates (e.g., 15.3–17.4 Ma [20]). The calibrated phylogeny

indicates a deep divergence between Smilodon and Homothe-

rium (18.0 Ma; 95% credibility interval: 16.0–20.0 Ma; estimated

sequence divergence�11%), supporting an Early Miocene sep-

aration into the tribes Smilodontini andHomotherini, respectively

(the latter is sometimes referred to as Machairodontini [21]). The

oldest undisputed Homotherium fossils from Early Pliocene as-

semblages in Ukraine and Kenya suggest either a Eurasian or

African origin of the genus and a subsequent dispersal into

America during the Late Pliocene (Blancan; [22, 23]). Smilodon

remains have only been recovered on the American continents,

from the Miocene-Pliocene boundary to the Late Pleistocene,

and have never been found in Eurasia [24]. The deep divergence

inferred from our mitogenome data between Homotherium and

Smilodon is congruent with the proposed evolution of these

genera around theMiocene-Pliocene transition on separate con-

tinents.WithinSmilodon, there are currently two recognized Late

Pleistocene species: S. populator, which has so far only been

found in South America, and S. fatalis, the last surviving Smilo-

don species of North America [8]. The Smilodon specimen inves-

tigated in this study was recovered in Chile and is dated to

11,335 years before present (Table 1); it thus can be assigned
Current Biology 27, 3330–3336, November 6, 2017 3331



Figure 1. Calibrated Phylogeny for Smilodon and Homotherium

Time-calibratedmitochondrial phylogeny of the Felidae, including the saber-toothed catSmilodon and scimitar-toothedHomotherium. Node support is indicated

by Bayesian posterior probabilities (see Figure S2 for RAxML phylogeny and bootstrap values). Calibrated nodes are indicated with a star (see also Table 2). Blue

node bars indicate the 95% credibility interval of divergence times. The lower axis shows millions of years. Homotherium artwork was provided by Binia De

Cahsan. The image of the mandible is adapted from [4]. See also Figures S1 and S2.
to the South American Late Pleistocene species S. populator.

The tMRCA of the three Homotherium individuals as inferred

from the Bayesian analyses is 144,800 years (95% credibility in-

terval: 77,076–215,970 years; estimated sequence divergence

0.2%–0.04%). This divergence date is relatively recent and is

similar to that reported for other felid species (e.g., leopards

from Asia [25]).

Late Pleistocene Occurrence of Homotherium in
Eurasia
Our genetic analyses corroborate published radiocarbon dates

and morphological descriptions, which together provide conclu-

sive evidence that the specimen recovered from the North Sea

represents the first confirmed Late Pleistocene Homotherium

from Eurasia, forcing a re-evaluation of the traditional view of

the demographic processes that preceded extinction of this

iconic megafaunal species. Very few other Late Pleistocene

Homotherium fossils have been recovered in Europe [26, 27],

and their age, origin, and species identification are subject to

much discussion [28–31]. The Homotherium specimen investi-

gated here was found on the Brown Bank region in the North

Sea (�80 km off the Dutch Coast), an area where Late Pleisto-

cene and Early Holocene fossils are commonly found from spe-

cies that existed inWestern Eurasia [32]. Furthermore, the fragile

state of the North Sea mandible makes it unlikely to have been

transported from remote regions, for example through tapho-

nomic processes. Based on morphological characteristics, the

specimen was identified as Homotherium rather than any other

Late Pleistocene felid genus [4]. The Late Pleistocene age of

this fossil has been confirmed through six independent radio-

carbon dates (�28,000 years old [4]), which makes it the only

firmly dated Late Pleistocene fossil in Europe assigned to the
3332 Current Biology 27, 3330–3336, November 6, 2017
genusHomotherium. The occurrence ofHomotherium in Europe

during the Late Pleistocene could be the result of several

different demographic scenarios. The Late Pleistocene Homo-

therium population in Eurasiamay have existed at low population

densities, effectively dropping under the ‘‘fossil detection

threshold,’’ with very few remains surviving in the fossil record,

which has also been previously proposed as an explanation for

the low abundance of Homotherium fossils in America [33, 34].

This scenario would not be unique toHomotherium; for example,

although there are currently only four fossils recovered from the

Denisovan hominins from a single cave, genetic data indicate

that they occupied large parts of Eurasia during the Late Pleisto-

cene [35–38]. Despite its widespread Holarctic distribution dur-

ing the Late Pleistocene, Homotherium, like other megafaunal

species, proved vulnerable to environmental and/or ecological

changes, which led to its eventual extinction. Alternatively, it is

conceivable that the Homotherium found in the North Sea de-

scends from a Late Pleistocene dispersal from a core population

in Central Eurasia or Beringia, as has been suggested for other

Pleistocene megafauna (e.g., mammoths [39] and wolves [40]).

Similar to extant large felids (e.g., [41]), Homotherium is likely

to have been a highly mobile taxon, and it may have re-colonized

Europe during the Late Pleistocene after the resident population

went extinct in the Middle Pleistocene. This scenario is consis-

tent with the estimated coalescence timing of the European

and American Homotherium mitochondrial lineages (95% cred-

ibility interval: 77–216 thousand years [Ka]).

In order to identify which of the possible demographic sce-

narios is applicable to Late Pleistocene Homotherium, addi-

tional samples have to be recovered and analyzed. However,

all of these scenarios point to a situation in which Homotherium

roamed at least part of the Eurasian continent for hundreds of



Table 2. Fossil Constraint Used for Calibrated Phylogeny

Fossil Fossil Constraint Calibration Prior Reference

Genetta fossil: 11.2 Ma minimum 11.2 Ma uniform: 50–11.2 Ma [16, 17]

Hyaenid fossil: 16.4 Ma minimum 16.4 Ma uniform: 50–16.4 Ma [16, 17]

Herpestid fossil: 16.4 Ma minimum 16.4 Ma uniform: 50–16.4 Ma [16, 17]

Felidae stem fossils, Prionodon fossils minimum 28 Ma uniform: 50–28 Ma [16, 17]

Lynx fossil: 5.3 Ma minimum 5.3 Ma uniform: 10–5.3 Ma [16, 17]

Acinonyx fossils: 3.8 Ma minimum 3.8 Ma uniform: 10–3.8 Ma [18, 19]

Caracal and serval fossils: 3.8 Ma minimum 3.8 Ma uniform: 16–3.8 Ma [19]

Oldest Panthera fossil: 3.8 Ma minimum 3.8 Ma uniform: 16–3.8 Ma [8, 19]

Oldest Panthera tigris fossil: 1.5 Ma minimum 1.5 Ma uniform: 10–1.5 Ma [8]

Fossil constraints and calibration priors used in the time-calibrated BEAST analysis [8, 16–19] are shown. Ma, million years.
millennia later than was previously believed. This situation

forces a re-assessment of the Late Pleistocene population dy-

namics and timing of extinction of this large felid species.

Some of the general attributes that threaten extant large-bodied

felids [42, 43], such as large body size, high trophic level (i.e.,

hypercarnivory [44–46]), and low population densities and/or

fragmented populations may also have placed Homotherium

at risk. However, our evidence of Late Pleistocene survival of

Homotherium in Europe suggests that these factors may not

have been the sole driving force behind its extinction, since it

survived for over 200,000 years at low or fragmented population

densities, as suggested by the scarcity of fossils. Thus, gath-

ering additional insights into the population structure and

extinction dynamics of Homotherium may also help explain

why the extinction risks of extant felids are sometimes overes-

timated [47]. Ultimately, Homotherium was unable to survive the

climatic and ecological changes that occurred at the end of the

Pleistocene, a time during which many other large-bodied

mammals, such as mammoths [39] and cave lions [48], also

experienced severe population fluctuations and extinction. In

order to gain a better understanding of the population dynamics

of Homotherium during the Late Pleistocene and why it eventu-

ally went extinct, more samples will have to be recovered and

analyzed from Europe as well as Asia. In light of the morpholog-

ical and genetic evidence for the Late Pleistocene occurrence

of Homotherium in Europe, it is conceivable that some Late

Pleistocene remains that are currently assigned to one of the

more common large cat species (e.g., cave lion) could be re-

identified as Homotherium.

Taxonomic Revision of Holarctic Homotherium

Species-level identification of saber-toothed cats has been

based on geographical and/or morphological data, which hold

a number of inherent limitations [49]. The data presented here

allow for a direct comparison at the mitochondrial DNA level

between the commonly recognized Homotherium species that

inhabited the North American and Eurasian continents:

H. serum and H. latidens, respectively [8]. We found low mitoge-

nome diversity among Late Pleistocene representatives of the

genus and a tMRCA of �145,000 years. Previous studies based

on short mitochondrial sequences from North American Homo-

therium have also found low levels of genetic diversity, despite

considerable geographical (>2,000 km) and temporal (>25,000
years) separation of the fossils [1]. We were unable to compare

our North Sea and North American mitogenomes with previously

published short mitochondrial sequences from other individuals

[1, 3], as we did not have complete sequence coverage for the

relevant mitochondrial regions (e.g., 16S, cytB, and ATP8). How-

ever, the very recent tMRCA (�145,000 years) for the three

Homotherium mitogenomic sequences is also indicative of low

diversity between the Homotherium sequences, particularly

considering their geographical distance. Low intraspecific diver-

sity in such a widespread species has been previously reported

for other carnivores (e.g., ancient lion sequences [48] and

modern wolf sequences [40]). We therefore compared the

intraspecific diversity of the three Homotherium mitogenomes

to the diversity between subspecies of other big cats (tigers,

lions, and leopards) and found the Homotherium sequence di-

versity to be lower than those for any extant felid species

(STAR Methods). The low mitogenomic genetic diversity is

further supported by the low genetic diversity measured

between short mitochondrial DNA fragments from two North

AmericanHomotherium [1]. This degree of genetic similarity sug-

gests that all three Homotherium individuals were representa-

tives of a single Late Pleistocene species, thus casting doubt

on the validity of the distinct American and Eurasian Homothe-

rium species currently recognized (H. serum and H. latidens,

respectively). Furthermore, the European Homotherium mito-

chondrial sequence is nested within the diversity of the two

American Homotherium sequences in the phylogeny (Figure 1),

further supporting the monospecificity of all Late Pleistocene

Holarctic Homotherium populations.

Since the first Homotherium fossil discovery in 1824 [50], mul-

tiple Homotherium species have been proposed. However,

these have typically been based on geographical or temporal

separation of fossils, rather than distinguishable morphological

characteristics [8]. In North America, older (Pliocene) fossils are

considered morphologically distinct from younger Pleistocene

finds and are thus generally separated into two species:

H. ischyrus and H. serum, respectively [7, 33, 51]. In the

Eurasian fossil record, such distinction between older and

younger forms is controversial: although earlier studies recog-

nized two [52] or even three distinct Eurasian species [53],

recent finds from Spain suggest that all Pleistocene Eurasian

Homotherium fossils are more accurately grouped into a single,

morphologically variable species, H. latidens [7]. These authors
Current Biology 27, 3330–3336, November 6, 2017 3333



also note that the variation within H. latidens is extensive

enough to assign North American H. serum fossils—if they

were found in Europe—to H. latidens [7].

The morphological overlap between North American and

Eurasian Homotherium fossils has been regarded as evidence

that all Pleistocene Homotherium can be assigned to a single,

morphologically variable species [5, 6]. It has also previously

been suggested, based on morphological similarities between

two Early Pleistocene individuals from France [54] and Oregon,

that these individuals should belong to the same species [34].

The high similarity found between mitochondrial DNA fragments

recovered from two North American (Yukon and Great Lakes

region) Homotherium fossils also indicates a very close relation-

ship between the individuals, despite their considerable

geographical and temporal distance [1]. Although clearly limited

due to small sample size, the mitochondrial DNA evidence that

we present here further supports the hypothesis, suggested

previously based on morphological data, that at least Late

Pleistocene North American and Eurasian Homotherium are

monospecific, rather than two separate species. For reasons

of priority, this taxon should be called H. latidens [55]; conse-

quently, H. serum [56] is a junior synonym.

Conclusions
In this study, we present partial mitogenome sequences from

two lineages of Machairodontinae, Smilodon and Homotherium,

and confirm the phylogenetic relationships and evolutionary

history of these iconic felids. Furthermore, the mitochondrial

DNA that we recovered from the North Sea Homotherium spec-

imen confirms the Late Pleistocene survival of this enigmatic

saber-toothed cat in Eurasia. Much like the Denisovan hominins,

the North SeaHomotherium represents another striking example

of the major gaps in our knowledge of Pleistocene fauna compo-

sition on the Eurasian continent and holds important clues about

population and extinction dynamics of Pleistocene species. By

applying DNA analysis on ancient samples, even a controversial

find such as the North SeaHomotherium can be firmly identified.

The Homotheriummitogenome sequences revealed low genetic

diversity, which strongly supports the hypothesis based on

morphology of a single, widespread Holarctic Homotherium

species during the Late Pleistocene (H. latidens). This study

highlights the importance of combining morphological and

genetic information for species identification.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d METHOD DETAILS
3334
B Morphological description for sample YG 439.38

(North American Homotherium)

B Laboratory procedures

B Preliminary PCR data

B Extractions

B Library preparation

B Capture
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d QUANTIFICATION AND STATISTICAL ANALYSIS

B Bioinformatic procedures

B Phylogenetic analysis

d DATA AND SOFTWARE AVAILABILITY
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the ‘‘Spear Horizon’’ at Schöningen (Germany). J. Hum. Evol. 89, 172–180.

13. Beden, M., de Bonis, L., Brunet, M., and Tournepiche, J.F. (1984).

Première d�ecouverte d’un f�elin machairodonte dans le Pleistocène moyen

des Charentes. Comptes Rendus Acad�emie Sci. Paris II 298, 241–244.

14. Tournepiche, J.-F. (1996). Les grands mammifères pl�eistocènes de
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METHOD DETAILS

Morphological description for sample YG 439.38 (North American Homotherium)
Specimen YG 439.38 fromDominion Creek, Yukon, consists of the distal three-quarters of a left humerus (Figure S1). The specimen is

generally well preserved, except for some erosion on the posterior parts of both epicondyles.Homotherium specimens are very rarely

recovered in eastern Beringia (unglaciated parts of Alaska andYukon), but their humeri can be readily distinguished frommuch larger,

andmore robustPanthera leo spelaea, the only other large Pleistocene felid that is also known from the region (Table S2). Some of the

key distinguishing characteristics are (1) general slenderness of the humerus shaft; (2) the angle of intersection of the deltoid and

medial ridges is relatively more acute; (3) the lateral supracondylar ridge is relatively straight and sharp, while in Panthera it is slightly

convex and more obtuse crested; (4) the relatively small entepicondylar foramen; (5) the entepicondylar bar is in a more anterior

position; and (6) the relative prominence of the lateral epicondyle and weaker development of muscle scar above. The specimen

compares well with descriptions and mensurational data from other Homotherium material from the Pleistocene of Yukon [68]

and areas in midcontinental North America [1, 9]. Morphological characteristics for remaining Homotherium specimens have been

described elsewhere [3, 4].

Laboratory procedures
All pre-PCR procedures were performed in dedicated ancient DNA facilities with appropriate contamination precautions in place

(e.g., [69]). Experiments for samples YG 439.38 and ZMA20.042 were performed at the Centre for GeoGenetics, University of Copen-

hagen. Samples SP1714 and SP1007 (Table 1) were processed in ancient DNA facilities of the Evolutionary Adaptive Genomics

group at Potsdam University. Preliminary PCR data generation was performed in 2008 at the Max Plank Institute for Evolutionary

Anthropology, Leipzig (MPI EVA).

Preliminary PCR data
DNA was extracted from sample SP1714 in dedicated cleanlab facilities at the MPI EVA using a silica spin column protocol and a

vacuum manifold [70]. Primer pairs (Table S4) were split into two pools of non-overlapping fragments. A total of 4 multiplex PCRs
e2 Current Biology 27, 3330–3336.e1–e5, November 6, 2017

mailto:paijmans.jla@gmail.com
http://beast.community/index.html
http://tree.bio.ed.ac.uk/software/figtree/


were set up in 25 mL reaction volumes using 5 mL template, containing: 1x AmpliTaq Gold buffer, 4 mMMgCl2, 1 mg/mL BSA, 0.2mM

each dNTP, 2U AmpliTaq Gold, and 1 mMof each primer in a pool of non-overlapping primer pairs (even versus odd numbered primer

pairs [71]). PCR cycling conditions were as follows: initial denaturation at 94�C for 10min, followed by 40 cycles of 94�C for 15 s, 55�C
for 30 s and 72�C for 15 s, ending with a final extension for 5min at 72�C. After multiplex PCR, a simplex PCRwas carried out for each

individual primer pair using the same conditions as described above and 5 mL of a 40-fold dilution of the respective multiplex PCR.

PCR products were tagged and built into NGS libraries [72], and sequenced on a 454-GS20. Raw data were demultiplexed using a

custom script and aligned to make a final consensus sequence per PCR product. The resulting data were used for validating and

extending the captured mitogenome sequences for sample SP1714 generated at the University of Potsdam (described below;

Table S4).

Extractions
All pre-PCR procedures (extraction, library building) were performed in dedicated ancient DNA facilities at the University of Potsdam

and the Centre for GeoGenetics, University of Copenhagen, with contamination precautions in place. For specimens YG439.38 and

ZMA20.042, samples of cortical bone were taken from long bone element (approx. 1 cm3) using a Dremel powertool, reduced to

powder in a Mikrodismembrator, and extracted according to the protocol described in Orlando et al. [73]. For the remaining

Homotherium samples, DNAwas extracted according to the protocol by Dabney et al. [74]. All procedures included negative controls

that were processed in parallel with the samples.

Library preparation
For specimens YG 439.38 and ZMA20.042, DNA extract and negative controls were built into genomic libraries using the NEB E6070

kit and a slightly modified version of the protocol as used by Vilstrup et al. [75]. Briefly, extract (30 mL) was end-repaired and then

passed through a MinElute column. The collected flow-through was then adaptor-ligated and passed through a QiaQuick column.

Adaptor fill-in reaction was then performed on the flow-through, before final incubation at 37�C (30min) followed by inactivation over-

night at�20�C. For libraries of specimens YG 439.38 and ZMA20.042, we amplified in a 50 mL reaction volume, using 25 mL of library

for 12 cycles under the following reaction conditions. Final concentrations were 1.25 U AccuPrime Pfx DNA Polymerase (Invitrogen),

1x AccuPrime Pfx reaction mix (Invitrogen), 0.4mg/mL BSA, 120nM primer in TE, and 120nM of a multiplexing indexing primer

containing a unique 6 nucleotide index code (Illumina). PCR cycling conditions consisted of an initial denaturation step at 95�C for

2 min, followed by 12 cycles of 95�C denaturation for 15 s, 60�C annealing for 30 s, and 68�C extension for 30 s. A final extension

step at 68�C for 7 min was also included. Library preparation success was checked on a 2% Agarose gel before purification using

the QIAquick column system (QIAGEN) and quantification was performed on an Agilent 2100 BioAnalyzer.

For remaining Homotherium specimens, libraries were prepared according to the single-stranded library protocol as set out in

Gansauge & Meyer [76]. The optimal cycle number for every library was estimated using qPCR [76]. Amplification was performed

in 4 parallel reactions of 20 mL each. Final concentrations in the indexing PCR reaction: 0.5 U AccuPrime Pfx DNA Polymerase

(Invitrogen), and 1x AccuPrime Pfx reactionmix (Invitrogen), 0.75 mMeach of the Illumina indexing primers, with a unique 8 nucleotide

index incorporated in the P7 primer. PCR cycling conditions were as follows: initial denaturation step at 95�C for 2 min, followed by

the qPCR-estimated number of cycles of 95�Cdenaturation for 15 s, 60�Cannealing for 30 s, and 68�C extension for 60 s, followed by

a 3 min final extension at 68�C. Libraries were visualized on the Agilent Tapestation 2200 andmeasured using Qubit 2.0 Fluorometric

quantification.

Capture
For specimens YG 439.38 and ZMA20.042, two sets of capture experiments were performed. The first method used biotinylated RNA

probes transcribed from fresh DNA extract derived frommodern lion tissue byMYcroarray (Ann Arbor, MI, USA). The secondmethod

used previously published lion genome data [77] to identify exon coding regions and create biotinylated RNA baits that covered these

regions. Both sets of baits were used in conjunction with MYbaits genome capture kit to enrich the ancient extracts for endogenous

felid DNA. After capture and cleanup, enriched libraries were re-amplified for further sequencing using Phusion polymerase with

primers IS5_reamp.P5 and IS6_reamp.P7 over 14 cycles [78]. The sequencing data resulted from a pooled product of both the

whole-genome enrichment and exon capture. Thus, although the mitochondrial data is likely to have come from the whole-genome

enrichment experiment as the exon capture bait set did not contain mitochondrial DNA baits, we could not distinguish between the

two in the resulting data.

For Homotherium samples SP1714 and SP1007, mitogenome MYbait capture baits were designed from preliminary mitogenome

data from sample YG 439.38, using only regions with R 5x coverage. Missing or ambiguous regions were replaced by a recon-

structed ancestral felid mitogenome [79]. Capture was performed according to the protocol described by Li et al. [80], at a hybrid-

ization temperature of 65�C. Additional European Homotherium samples were screened for endogenous content using low-level

shotgun sequencing, but due to the low estimated endogenous content, these samples were not used for sequence capture

(Table S1).
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Bioinformatic procedures
Mitogenome assembly

For samples YG 439.38 (Homotherium) and ZMA20.042 (Smilodon), an iterative mitogenome assembly method was used to recon-

struct the mitogenome in the absence of a close reference. Raw sequences were trimmed using cutadapt v1.10 for single-end data

(Martin, 2011), using a length cut-off of 25bp. Before mitogenome assembly, duplicate reads were removed from the fastq data using

PRINSEQ-lite v0.20.4 [58]. For both YG 439.38 (Homotherium) and ZMA20.042 (Smilodon), MitoBIM v1.8 [61] was used to recon-

struct the partial mitogenomes. MITObim was implemented using three different references as starting bait sequences (Felis catus

(GenBank: FCU20753), Crocuta crocuta (GenBank: JF894377.1) and Prionodon pardicolor (GenBank: NC_024569.1)) with default

parameters apart from adjustments to the kmer value (kvalue = 25) and mismatch values (following [81]). We tried different mismatch

values, ranging from 0%–8%. For both theHomotherium and Smilodon, no additional mitogenomic information was recovered using

a mismatch value of above 3%.We therefore decided upon 3% as our mismatch value. MITObim output mira files were converted to

sam files and then visualized using Geneious. For each starting bait sequence, a reference consensus sequence was constructed

using a minimum coverage value of 10x and a base call threshold of 75%. These three sequences were then aligned using

Mafftv7.271 and a majority rule consensus base calling was implemented to generate the final Homotherium and Smilodon mito-

chondrial sequences.

Mitogenome mapping

RemainingHomotherium samples were aligned to themitogenome assembly for YG439.38 (Table S1). Raw sequenceswere trimmed

using SeqPrep (available from https://github.com/jstjohn/SeqPrep) for paired-end data, and cutadapt v1.10 for single-end data [57].

All reads shorter than 30 bp were discarded: a more stringent length cut-off than for samples YG 439.38 (Homotherium) and

ZMA20.042 (Smilodon) to ensure reliable read alignment. The Burrows-Wheeler Aligner (BWA) v0.7.8 [59] was used for readmapping,

with default values for seed length (32 bp) andmismatch values (0.04). Samtools v1.19 [60] was used to remove readswith amapping

quality < Q30. Duplicates were identified according to both the 50 and 30 end mapping coordinates using MarkDuplicatesByStar-

tEnd.jar (https://github.com/dariober/Java-cafe/tree/master/MarkDupsByStartEnd). The consensus sequence was generated using

Geneious v7.0 [62], using a minimum sequence depth of 4x and a 75%majority rule for base calling. For sample SP1714, short mito-

chondrial DNA sequences from earlier published work [3] and preliminary generated PCR data (Table S4) were compared to the

mitogenome retrieved using capture, for an independent validation of parts of the mitogenome sequence (over 1,200 bp of the cap-

ture consensus sequence). Furthermore, regions where there was no coverage using the capture data could be supplemented using

the PCR data (about 600 bp).

Phylogenetic analysis
Alignment

Mitogenome sequences were aligned using ClustalW v2 [82] as implemented in Geneious v7.0. The control region, as well as any

positions in the alignment that contained missing data, were removed. The resulting alignment (6,649 bp in length) was manually

annotated in Geneious using the domestic cat (GenBank: FCU20753) as reference. All mitochondrial regions except for the control

region were present in the alignment, although these were highly fragmented and partially incomplete due to the removal of missing

data. For intraspecies comparison between Homotherium and other large-bodied felids, mitogenomes for tiger, lion and leopard

subspecies were downloaded and aligned with the threeHomotherium specimens using ClustalW v2. Alignment columns containing

missing data were not considered to enable direct comparison of genetic distances within extant species with those estimated from

partial Homotherium and Smilodon assemblies. The alignment contained four tiger subspecies (Panthera tigris altaica [GenBank:

JF357973], P. t. amoyensis [GenBank: HM589215], P. t. tigris [GenBank: JF357968], and P. t. sumatrae [GenBank: JF357969]),

two leopard subspecies (Panthera pardus orientalis [GenBank: KX655614], and P. p. japonensis [GenBank: KJ866876]) and two

lion subspecies (Panthera leo leo [GenBank: KP001502] and P. l. persica [GenBank: KP001501]). The observed genetic distances

(p-distance) were measured in MEGA v5.2 [63] to be 0.006, 0.007, 0.003 and 0.001 for tiger, leopard, lion and Homotherium,

respectively.

Partitionfinder

An optimal set of partitions and substitution models was selected from all possible combinations of genes and tRNAs, considering all

substitution models available in BEAST, under the Bayesian Information Criterion (BIC) in PartitionFinder v1.1.1 [64]. The partition-

finder analysis used the greedy search algorithm and linked branch lengths. PartitionFinder found best support for a five-partition

scheme (BEAST xml input file available upon request).

RaxML

The maximum likelihood tree was calculated using RaxML-HPC v8.2.4 [65] CIPRES black box version on the CIPRES Science

Gateway [66], with default GTR+CAT substitution models for each partition. RAxML rapid bootstrapping was used with 1000

replicates. The African palm civet (Nandinia binotata, belonging to the monotypic family Nandiniidae) was used as outgroup.

BEAST

Bayesian analyses were performed in BEAST v. 1.8.2 [67], with the 5 partitions selected by PartitionFinder. First, we tested for rate

variation among lineages using a lognormal clock model on each partition (mean 0.05, standard deviation 0.05), with a uniform prior

on the mean per-lineage substitution rate of 0 to 20% per million years, under a Birth-Death speciation tree prior. The MCMC chain
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was run for a sufficient number of generations to achieve convergence and adequate posterior sampling of all parameters

(ESS > 200), checked using Tracer v1.5 (available from http://beast.community/tracer). For some partitions, individual parameters

of the GTR substitution model selected by PartitionFinder failed to converge, and so the simpler HKY model was used for these par-

titions in order to achieve convergence. The posterior sample of the ucld.stdev parameter, which describes substitution rate variation

among lineages, was found to abut zero, thus not rejecting an absence of rate variation and justifying the use of a strict clock model.

The analysis was rerun using a strict clock model with an uninformative uniform prior on the mean per-lineage substitution rate of 0 to

20% per million years, for molecular dating analyses with fossil calibration. The fossil calibrations that were used are listed in Table 2.

The BEAUTI-generated XML input file is available upon request. TreeAnnotator v1.8.2 was then used to remove the first 25% of trees

as burnin and extract the Maximum Clade Credibility (MCC) tree with nodes scaled to the median heights recovered by the posterior

sample.

DATA AND SOFTWARE AVAILABILITY

Homotherium and Smilodon consensus sequences are available on GenBank: MF871700–MF871703.
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