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1  | INTRODUC TION

Tropical ecosystems are global hotspots of biodiversity and ende-
mism. To explain the higher diversity in lower latitude regions, Janzen 
(1967) proposed that the greater temporal thermal stability and 

spatial environmental heterogeneity on tropical mountains should 
select for narrow thermal tolerances, which in turn reduce effective 
dispersal and increase population isolation across elevational gradi-
ents (Ghalambor et al., 2006; Gill et al., 2016). Numerous studies 
support the first prediction of the hypothesis that species in the 
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Abstract
Janzen's influential “mountain passes are higher in the tropics” hypothesis predicts re-
stricted gene flow and genetic isolation among populations spanning elevational gra-
dients in the tropics. Few studies have tested this prediction, and studies that focus 
on population genetic structure in Southeast Asia are particularly underrepresented 
in the literature. Here, we test the hypothesis that mountain treeshrews (Tupaia 
montana) exhibit limited dispersal across their broad elevational range which spans 
~2,300 m on two peaks in Kinabalu National Park (KNP) in Borneo: Mt Tambuyukon 
(MT) and Mt Kinabalu (MK). We sampled 83 individuals across elevations on both 
peaks and performed population genomics analyses on mitogenomes and single nu-
cleotide polymorphisms from 4,106 ultraconserved element loci. We detected weak 
genetic structure and infer gene flow both across elevations and between peaks. 
We found higher genetic differentiation on MT than MK despite its lower elevation 
and associated environmental variation. This implies that, contrary to our hypothesis, 
genetic structure in this system is not primarily shaped by elevation. We propose 
that this pattern may instead be the result of historical processes and limited upslope 
gene flow on MT. Importantly, our results serve as a foundational estimate of genetic 
diversity and population structure from which to track potential future effects of cli-
mate change on mountain treeshrews in KNP, an important conservation stronghold 
for the mountain treeshrew and other montane species.
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tropics have narrower elevational ranges than those in the temper-
ate zone (Ghalambor et al., 2006; McCain, 2009). Fewer studies have 
tested the second prediction that restricted gene flow among popu-
lations spanning elevational gradients results in genetic divergence 
(Ghalambor et al., 2006). Available data regarding this prediction are 
contradictory: some studies have found significant population ge-
netic divergence across elevations, for example in insects (Gueuning 
et al., 2017; Polato et al., 2018) and in endotherms including birds 
(Bertrand et al., 2014; DuBay & Witt, 2014; Gadek et al., 2018; Linck 
et al., 2019) and mammals (Feijó et al., 2019). Others have detected 
high rates of gene flow alongside adaptive phenotypic divergence 
(Branch et al., 2017; Cheviron & Brumfield, 2009).

Few studies have investigated the spatial population genetic 
structure of small mammals across elevational gradients in tropical 
montane ecosystems (Muenchow et al., 2018). Thus, the influence 
of elevational gradients on gene flow in terrestrial endotherms at 
small spatial scales is not well understood. Studying spatial popu-
lation genetic structure in the montane tropics is important not 
only because it allows for hypothesis testing regarding the effects 
of elevational gradients on genetic structure, but also because it 

enables researchers to identify distinct evolutionary units warrant-
ing protection and to establish benchmarks from which to monitor 
responses to changing global environmental conditions (Camacho-
Sanchez et al., 2018; Castillo Vardaro et al., 2018; Moritz, 1994). This 
is critical given the vulnerability of tropical montane ecosystems 
to the impacts of global climate change (GCC) (Feeley et al., 2017; 
Lenoir & Svenning, 2015).

Here, we investigate the genetic structure of the mountain 
treeshrew, Tupaia montana, across its full elevational range on two 
mountains in Kinabalu National Park (KNP), Sabah, Borneo: Mt 
Kinabalu (MK) and Mt Tambuyukon (MT; Figure 1). The mountain 
treeshrew provides an interesting system in which to study the ef-
fect of environmental gradients on population structure because it 
has a broad elevational distribution compared to other small mam-
mals in KNP (Camacho-Sanchez et al., 2019; Nor, 2001). On MK, 
the species occurs from ~900 m above sea level (masl) to at least 
3,200 masl, encompassing four vegetation zones; on MT it ranges 
from ~900 m to the summit at 2,579 masl, including three vege-
tation zones (Kitayama, 1992). Given the temperature lapse rate 
in KNP at −0.55°C per 100 m of elevation gain (Kitayama, 1992), 

F I G U R E  1   (a, left) Map of mountain treeshrew distribution (inset modified from IUCN 2019, with a white star indicating the location 
of Kinabalu National Park, KNP), and a map of sampling locations within KNP, Sabah, Borneo. Park boundaries are demarcated by dashed 
lines, transects by black lines and sampling locations by white circles, with elevations at each site labelled. Shading indicates the lower and 
upper portions of mountain treeshrew habitat, with 900–2,000 masl shown in medium grey and >2,000 masl in dark grey. The total number 
of mountain treeshrews collected and the number of unrelated individuals included in our analyses at each trapping site are as follows 
(unrelated/total): MK 900, 6/6; 1,600 5/6; 2,200 5/5; 2,700 4/4; 3,200 5/5; MT 900 4/4; 1,300 4/6; 1,600 4/4; 2,000 14/22; 2,400 7/14. 
(b, right) Image of a mountain treeshrew and a pitcher plant (Nepenthes lowii), KNP (Photo credit: Chien C. Lee). The two species exhibit a 
mutualistic relationship in which mountain treeshrews feed on the sugary secretions provided by the plant and in turn provide the plant with 
phosphorous and nitrogen through faeces (Chin et al., 2010)
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mountain treeshrews experience a 12.65°C average range in tem-
perature on MK, which is higher than the thermal neutral zone 
for most small mammals (Khaliq et al., 2014). On MT, mountain 
treeshrews experience an 8.8°C temperature range (Camacho-
Sanchez et al., 2018).

Mountain treeshrews exhibit facultative mutualism with pitcher 
plants in the genus Nepenthes—treeshrews consume the plants' car-
bohydrate-rich secretions and defecate into the pitchers, providing 
the plants with supplementary nitrogen and phosphorous (Chin 
et al., 2010; Clarke et al., 2009). Although mountain treeshrews 
provide critical nutrients to the plant, the importance of the plant 
to treeshrews is unknown. The range of mountain treeshrews ex-
ceeds that of the plants—none of the plants are distributed below 
1,200 masl or above 2,650 masl. As such, treeshrews are not reliant 
on them for nutrients even in high-elevation areas without fruiting 
trees.

We test the hypothesis that, consistent with Janzen's (1967) 
hypothesis, restricted gene flow across the steep ecological gra-
dient that mountain treeshrews inhabit has resulted in significant 
genetic differentiation. Although the ecology of mountain tree-
shrews is poorly understood, our hypothesis is informed by obser-
vations of small home ranges (Emmons, 2000; Payne et al., 2016) 
and phenotypic changes associated with elevational changes 
(Hinckley et al., in review). We predict that mountain treeshrews 
will exhibit significant differentiation in neutral genetic markers (i) 
between mountains, due to limited dispersal across the lowland 
habitat that connects them, and (ii) across elevations—with greater 
differentiation on MK due to its higher elevation and associated 
environmental variability.

To test our predictions, we analyse both mitochondrial ge-
nomes (mitogenomes) and nuclear ultraconserved element (UCE)-
associated single nucleotide polymorphism (SNP) markers from 
mountain treeshrews collected across their full elevational range 
in KNP in a population genetics framework. Previous studies 
have shown that UCEs are sufficiently variable to resolve shallow 
phylogenies on a phylogeographical scale (Faircloth et al., 2012; 
Harvey et al., 2016; Mason et al., 2018; Smith et al., 2014) including 
intraspecific phylogenies (Giarla et al., 2018), and to answer ques-
tions regarding recently diverged species (Oswald et al., 2016; 
Winker et al., 2018). However, ours is one of the first studies to 
describe the intraspecific variability of SNPs derived from UCE 
loci at a fine spatial scale.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

We trapped small mammals on both MK and MT within KNP 
(6°09′N, 116°39′E) during two field seasons in 2012 and 2013. At 
4,095 masl, MK is the tallest mountain in the Sundaland biogeo-
graphical region. It is relatively young, having reached its present 

height ~1 million years ago (Ma) (Hall et al., 2009). Eighteen kilome-
tres to the north of MK, the less-studied MT stands at 2,579 masl 
(Figure 1a). MT is older—its major uplift occurred as part of a dif-
ferent geological process, as part of the Crocker Range, 7–11 Ma 
(Hall et al., 2009).

Our trapping methodology and permitting information is de-
scribed in Camacho-Sanchez et al. (2019). Briefly, we set traps 
from ~503 to 3,466 masl on MK and from ~331 to 2,509 masl on 
MT (Figure 1a). The mountain treeshrew was the most frequently 
caught species, representing 37.5% of all catches. For this study, we 
included 92 Tupaia individuals: 84 mountain treeshrews and eight 
outgroup individuals from three congeners, the pygmy treeshrew 
(T. minor, n = 2), the large treeshrew (T. tana, n = 5) and the ruddy 
treeshrew (T. splendidula, n = 1), the sister species of the mountain 
treeshrew (Roberts et al., 2011; Table S1).

2.2 | Laboratory methods

Laboratory work was performed at the Center for Conservation 
Genomics (CCG), Smithsonian Conservation Biology Institute, 
Washington, DC. We extracted DNA from liver and ear punch sam-
ples using a DNeasy Blood and Tissue Kit (Qiagen) following the 
manufacturer's protocol. We amplified whole mitogenomes in two 
fragments using long-range PCR (polymerase chain recation), frag-
mented the PCR products to an average length of 500 bp using a 
Qsonica Q800R sonicator (QSonica), and prepared single-indexed 
DNA libraries for sequencing using a Kapa LTP Library Preparation 
kit (Kapa Biosystems) following Hawkins et al. (2016). We pooled 
libraries equimolarly and sequenced on an Illumina MiSeq with 
2 × 100-bp reads (Illumina).

We used in-solution DNA hybridization to enrich genomic DNA 
for UCEs following Hawkins et al. (2016). We sheared DNA ex-
tracts and constructed indexed libraries as above. We quantified 
libraries using a Qubit fluorometer (Life Technologies) with a 1× 
double-stranded DNA HS assay kit and multiplexed four to eight 
samples equimolarly prior to enrichment. We used a NimbleGen 
SeqCap EZ kit (Roche) containing 54,689 unique 60-bp DNA 
probes representing 5,561 vertebrate UCE loci with an average 
of 4× tiling per base per locus to enrich multiplexed libraries fol-
lowing the manufacturer's protocol. Post-enrichment libraries 
were amplified with 12–14 cycles of PCR using Kapa HiFi HotStart 
DNA polymerase (Kapa Biosystems) following the manufacturer's 
protocol.

Following visualization on a Bioanalyzer 2100 (Agilent 
Technologies) with High Sensitivity DNA kits, enriched librar-
ies were quantified via quantitative PCR (qPCR) using the Kapa 
Biosystems Illumina Library Quantification Kit (Kapa Biosystems). 
Samples were pooled equimolarly and sequenced with 2 × 150-bp 
reads on Illumina HiSeq2000 (Semel Institute of Neurosciences, 
UCLA, and University of Copenhagen, Denmark) and MiSeq (CCG) 
platforms.
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2.3 | Mitogenome assembly and alignment

We analysed mitogenomes to investigate the population struc-
ture and genetic diversity of mountain treeshrews. Because mi-
togenomes are inherited matrilineally and are not subject to 
recombination, they are frequently used to investigate population 
structure, colonization history and species' demographic histories 
(Harrison, 1989).

Mitogenome amplicon reads were quality filtered with trim-
momatic version 0.33 (Bolger et al., 2014) with parameters 
SLIDINGWINDOW: 4:15 and MINLEN: 36. Because the only pub-
licly available mitogenome representing any Tupaia species (the 
northern treeshrew, T. belangeri NC_002521; Schmitz et al., 2000) 
is highly divergent from our study species (Roberts et al., 2011), we 
first generated reference mitogenomes for the mountain treeshrew 
and three closely related outgroup species: the pygmy treeshrew, 
large treeshrew and ruddy treeshrew. For each species, we se-
lected one individual with the highest number of sequencing reads 
(pygmy treeshrew, BOR 443; large treeeshrew, BOR 010; ruddy 
treeshrew, UMMZ174429) and assembled sequences de novo with 
the mira version 1.0.1 plugin in geneious version 9.1.2 (Biomatters), 
using “Quality Level Accurate” and default settings. Quality filtered 
sequence reads were mapped to the appropriate reference using 
bwa-mem version 0.7.10 (Li, 2013) with default parameters. We also 
assembled mitogenomes from UCE-enriched library sequences 
(Supporting Information). Consensus sequences were generated 
with geneious (lowest coverage to call a base 5× and Highest Total 
Quality parameters) and aligned with the mafft version 7.450 plugin 
(Katoh et al., 2002). We transferred annotations from the north-
ern treeshrew reference to the consensus sequences. To rule out 
the presence of nuclear copies of mitochondrial genes (NUMTs), 
we translated all protein-coding genes to check for frame shifts or 
stop codons.

2.4 | Genetic diversity and population structure

Because the inclusion of close relatives can bias estimates of 
genetic diversity and structure (Goldberg & Waits, 2010), we 
removed first-order relatives identified by our SNP data set and 
performed all subsequent mitogenome analyses with the reduced 
data (hereafter “unrelated data set”). We defined haplotypes and 
calculated haplotype diversity (Hd), nucleotide diversity (�) and 
Tajima's D using dnasp version 6.12.03 (Librado & Rozas, 2009). 
We estimated the differentiation between MK and MT and be-
tween high and low elevations within each peak through analysis 
of molecular variance (AMOVA) in arlequin version 3.5 (Excoffier 
& Lischer, 2010) with a permutation test of 10,000 replicates to 
assess statistical significance. We visualized relationships among 
haplotypes by generating a median-joining network with popart 
version 1.7 (Leigh & Bryant, 2015).

2.5 | Phylogenetic analysis and modelling 
demographic history

We performed phylogenetic analyses to place the mitochondrial lin-
eages detected in our mountain treeshrew samples within an evolu-
tionary framework with respect to other Bornean treeshrew species 
in the Tupaia clade (i.e., the large treeshrew, pygmy treeshrew and 
ruddy treeshrew), and to confirm the monophyly of the mountain 
treeshrew within the group. We used partitionfinder version 2.0 
(Lanfear et al., 2012) to select partitions and substitution models 
and estimated a phylogeny using mrbayes version 3.2.6 (Ronquist & 
Huelsenbeck, 2003). We then used beast version 1.8.4 (Drummond 
& Rambaut, 2007) to estimate the timing of divergence between the 
mountain treeshrew mitochondrial lineages we identified.

To infer demographic history, we performed a Bayesian co-
alescent skyline plot analysis using beast version 2.0 (Bouckaert 
et al., 2014). We used a time to most recent common ancestor 
(TMRCA) prior of 450,000 years before present (lognormal distri-
bution, µ = 0.45, σ = 0.2), the estimated date of divergence between 
the two mitochondrial lineages as determined by the dating analysis 
performed in beast (Supporting Information).

2.6 | Genotyping UCE-associated SNPs

To generate the SNP data set, we followed the phyluce version 1.5.0 
pipeline with default parameters (Faircloth, 2016) for sequence trim-
ming, de novo assembly of contigs, identification of UCE loci, and 
sequence alignment. We generated a pseudogenomic reference 
by aligning each locus with mafft version 7.407 and trimming using 
gblocks version 0.91b with default parameters (Castresana, 2000). We 
then used geneious to generate a consensus sequence for each locus, 
replacing ambiguity codes with an appropriate nucleotide at random. 
We used picard version 1.106 (http://broad insti tute.github.io/picar d/), 
and samtools version 1.9 (Li et al., 2009) to create sequence diction-
aries and reference indices from the reference. We used the phyluce 
script snps.py to automate alignment of trimmed reads from each sam-
ple to the reference with bwa-mem version 0.7.17, and then called SNPs 
with the HaplotypeCaller tool of the Genome Analysis Toolkit version 
3.7 (gatk; McKenna et al., 2010) following Giarla and Esselstyn (2015). 
Using vcftools version 0.1.16 (Danecek et al., 2011), we removed SNPs 
that failed to pass gatk quality filters (QD < 2.0 || FS > 60.0 || MQ < 40.0 
|| HaplotypeScore > 13.0 || MappingQualityRankSum < −12.5 || 
ReadPosRankSum < −8.0), and selected SNPs with a minimum depth 
of coverage of 8 per individual and a minor allele frequency ≥ 5%. We 
used HD_plot.py (McKinney et al., 2017) to filter SNPs resulting from 
putative paralogues or incorrectly assembled contigs from the data 
set by removing SNPs with heterozygosity >0.75 and a read-ratio 
deviation score D >10. The D statistic is a measure of deviation from 
the expected allelic read ratio of 1:1 when reads are summed over all 
heterozygous individuals. This method more accurately identifies true 

http://broadinstitute.github.io/picard/
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SNP loci than methods relying on read depth or heterozygote excess 
alone (McKinney et al., 2017). After filtering with HD_plot.py, we fur-
ther filtered SNPs that that were out of Hardy–Weinberg equilibrium 
(HWE) after Bonferroni correction for multiple comparisons (p < 10−5) 
using vcftools version 0.1.16 because strong deviations from HWE are 
usually indicative of genotyping error (Chen et al., 2017). To generate 
a set of unlinked SNPs, we selected one SNP per UCE using vcftools 
version 0.1.16 “-thin 2000.” We used the unlinked SNP data set with 
10% missing data for all SNP-based analyses except calculation of 
genetic diversity and effective population size, principal components 
analysis (PCA), discriminant analysis of principal components (DAPC) 
and Bayesian cluster analysis with structure version 2.3.4 (Pritchard 
et al., 2000), for which we used a data set with no missing data.

2.7 | Generating phased pseudo-
haplotype sequences

To include multiple SNPs per UCE locus as well as invariant sites for the 
migrate-n analysis, we generated multiple sequence alignments of pseu-
dohaplotypes. We did this by using the EMIT_ALL_SITES output mode 
of the gatk HaplotypeCaller tool. We filtered the resulting VCF file to 
include only UCE loci with at least one SNP with no more than 10% miss-
ing data. We then generated alignments from the VCF file with a custom 
ruby script, vcf2aln version 0.4.2 (https://github.com/campa nam/vcf2aln, 
Supporting Information). This script utilizes phasing information where 
present and randomly selects an allele where phase is unresolved.

We trimmed the phased UCE sequence alignments with gblocks 
version 0.91b (Castresana, 2000) using default parameters and 
quantified informative sites with the phyluce_align_get_informa-
tive_sites.py phyluce script. For the final data set used in the migrate-n 
analysis, we retained only loci with at least one and fewer than 10 
parsimony-informative sites (PIS) to increase the signal-to-noise 
ratio of our data set. migrate-n calculates model and parameter like-
lihoods for each locus independently and averages results across 
loci taking into account the posterior distributions of each (Beerli 
& Palczewski, 2010). Uninformative loci with flat posterior distribu-
tions contribute less to the final average; therefore, removing invari-
ant loci should not bias our results, while including them increases 
computation time. We removed loci with more than 10 PIS (i.e., more 
than ~2SD above the mean [x̄  = 3.6, SD = 4]) because their diver-
sity is probably artificially high due to errors introduced during de 
novo assembly or sequence alignment (Gilbert et al., 2018). Gilbert 
et al. (2018) showed that filtering sites on the basis of signal-to-noise 
in a concatenated UCE alignment improved the resolution of hard-
to-resolve nodes in the Neoaves phylogeny, and that after filtration, 
the topology converged on that derived from a much larger data set.

2.8 | Genetic diversity and effective population size

We removed individuals that were identified as first-degree rela-
tives (parent–offspring or full siblings) according to the king version 

2.1.4 software (Manichaikul et al., 2010; i.e., those with kinship co-
efficients ≥0.18). Using the unlinked SNPs with 10% missing data, 
we first calculated pairwise kinship values and identified putative 
family groups with the king software and then ran a PC-AiR analysis 
with genesis version 2.2.2 (Conomos et al., 2016) in R version 3.6.3 
(R Core Team 2019, applies to all subsequent use of R) to identify 
an “unrelated” subset of individuals. We used genalex version 6.503 
to estimate the statistical power of the SNP data set to differenti-
ate individuals by calculating pIDsib, the probability of two individuals 
having identical genotypes assuming siblings are present in the data 
(Waits et al., 2001).

We calculated average expected and observed heterozygosity 
(HE and HO) and the inbreeding coefficient (FIS) with vcftools version 
0.1.16 using our SNPs with no missing data. We also concatenated 
FASTA alignments of UCE sequence pseudohaplotypes for all indi-
viduals in the unrelated data set and used the maximum composite 
likelihood method to calculate nucleotide diversity (�) in mega ver-
sion 7.0.26 (Kumar et al., 2016).

We estimated effective population sizes (Ne) using the linkage 
disequilibrium model with random mating (Waples & Do, 2008) im-
plemented in neestimator version 2.1 (Do et al., 2014). We report 
estimated Ne values using “Lowest Allele Frequency Used” 5% and 
95% confidence intervals generated by the “Parametric method” for 
unrelated individuals for each population cluster identified by struc-
ture separately.

2.9 | Population structure

We characterized population genetic structure using the SNP data 
set with no missing data. We performed PCA and DAPC with the 
adegenet version 2.1.1 package (Jombart, 2008) in R. For the DAPC 
analysis, we first conducted K-means clustering and selected the 
number of clusters based on the lowest Bayesian information cri-
terion (BIC) value. We performed cross-validation to determine the 
number of PCs to retain by calculating the lowest root mean squared 
error. We then ran DAPC, retaining 20 PCs and two discriminant 
functions.

We used structure version 2.3.4 to infer the number of popu-
lation clusters (K) and the proportion of individual membership 
assigned to each cluster (qk). We used a burn-in of 500,000 steps 
followed by 1,000,000 recorded steps, tracking the probability of 
the data given K (lnP(D)) to ensure that we ran the program long 
enough for the values to stabilize. We used the admixture model, 
no location priors and assumed correlated allele frequencies (Falush 
et al., 2003). We performed a simulation with K from 1 to 7 with 
10 replicates each and identified meaningful K values using the ΔK 
method (Evanno et al., 2005) implemented in structure harvester 
version 0.6.94 (Earl & vonHoldt, 2012). We combined replicate runs 
using clumpp version 1.1.2 (Jakobsson & Rosenberg, 2007).

To quantify the levels of differentiation between population 
clusters identified by structure, we performed an AMOVA and cal-
culated pairwise FST values using the SNP data set with 10% missing 

https://github.com/campanam/vcf2aln
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data in genalex version 6.5 (Peakall & Smouse, 2012), with 10,000 
permutations to generate the null distribution. To investigate local 
spatial genetic structure, we performed a Mantel test using ade4 ver-
sion 1.7 (Dray & Dufour, 2007) in R on both the full and the unrelated 
data set. We tested for a correlation between pairwise genotypic 
distance and Euclidean geographical distance with 9,999 permuta-
tions to generate the null distribution. We also generated a Mantel 
correlogram to test for spatial autocorrelation between pairs of tree-
shrews at different distance classes using genalex. We first calculated 
pairwise linear geographical and genotypic distances, and then used 
the “Spatial” option with 9,999 permutations. We defined seven dis-
tance classes (0.2, 1.0, 2.0, 5.0, 10.0, 15.0 and 18.0 km) based on 
Sturges's Rule (Sturges, 1926), chosen to ensure sufficient compar-
isons within each class. Finally, we calculated the average, median 
and maximum geographical distances between pairs of individuals 
in each kinship class corresponding to first-, second-, third-order 
and distant relatives (Table 1) as an additional way to quantify the 
decay of genetic relatedness with distance. To test for significant 
differences between the means in each kinship class, we performed 
a one-way ANOVA in R with a Tukey Honest Significant Differences 
test and a Bonferroni correction for multiple comparisons (Combs 
et al., 2017).

2.10 | Migration and population models

We used the program migrate-n version 3.6 with its Bayesian imple-
mentation (Beerli, 2005) to compare support for six different mod-
els of population structure and migration (diagrams of hypotheses 
in Figure 2). We used the phased pseudohaplotype sequence data 
set for this analysis to take advantage of the higher information 
content in DNA sequences relative to SNPs. Although our workflow 
may generate chimeric sequences in instances where phase is un-
resolved, we do not expect that this would affect model selection 
(Andermann et al., 2018; P. Beerli, pers. comm.). However, to en-
sure that phase did not affect model inference, we ran the migrate-n 
analysis twice with different configurations of variants within haplo-
types while maintaining all other settings.

We compared models to test our a priori hypotheses of sig-
nificant genetic structure and limited gene flow between MK and 

MT and between high and low elevations. We also included mod-
els of population structure based on the structure results in order 
to compare migration rates and directionality between population 
clusters. The models included the following: (i) panmixia, (ii) four 
populations (high-elevation MK, low-elevation MK, low-elevation 
MT and high-elevation MT) with bidirectional migration between 
adjacent pairs, (iii) three populations (high-elevation MT, low-eleva-
tion MT and all of MK) with bidirectional migration between adja-
cent pairs, (iv) three populations with migration between all pairs, (v) 
two populations (high-elevation MT separate from all others) with 
bidirectional migration, and (vi) two populations with unidirectional 
migration from high-elevation MT (Figure 2).

For model 2, we assigned individuals to populations based on 
their sampling location: low-elevation individuals <2,000 masl, and 
high elevation individuals ≥2,000 masl. For models 3, 4, 5 and 6, we 
assigned individuals based on structure output for K = 3 and K = 2, 
respectively. We randomly selected five individuals from each pop-
ulation cluster (n = 10 haplotypes). We did not include all individ-
uals because for coalescent processes, increasing the sample size 
above this does not necessarily improve accuracy, but substantially 
increases computation time (Felsenstein, 2005). For each model, we 
ran two long chains of 20,000,000 steps, sampled every 100 steps 
with 50,000 steps per chain discarded as burn-in, and with four 
heated chains. To ensure comparability across models, we ran the 
most complex model first and used the same prior distributions and 
ran parameters for all subsequent models. We assessed chain mixing 
through acceptance ratios and estimated sample size (ESS) of param-
eters and genealogies (ESS ≥ 40 million). We calculated log Bayes 
factors (LBFs) and model probability using the Bezier approximation 
of the marginal model likelihood and the formula described by Beerli 
and Palczewski (2010).

3  | RESULTS

3.1 | DNA sequencing

We obtained mitochondrial genome sequences from 83 mountain 
treeshrew individuals (MT423905–MT423940) and eight sequences 
from three congeners (MT442045–MT442052): the large treeshrew 

TA B L E  1   Geographical distances between pairs of individuals with different levels of estimated relatedness based on analysis with the 
king software

Kinship Relatedness n Average distance (m) Median distance (m)
Maximum 
distance (m)

>0.18 First order (parent–offspring, 
siblings)

42 162.5 100.8 570.1

0.177–0.0884 Second order (e.g., half-siblings) 56 1,247 322.8 25,850

0.0883–0.0442 Third order (e.g., cousins) 112 4,819 793.0 26,490

<0.044 Distant or unrelated 2,932 12,310 15,960 29,430

Note: ANOVA and Tukey's Honest Significant Differences test showed significant differences in distances between all pairs except first- and second-
order relatives and second- and third-order relatives (p < .05).
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(n = 5), the small treeshrew (n = 2) and the ruddy treeshrew (n = 1). 
Mitogenomes were sequenced to an average depth of 50×.

We sequenced UCEs from 80 mountain treeshrews (SRA acces-
sion PRJNA629376). Each UCE-enriched library was sequenced with 
a mean of 2.3 million reads (914,104–7,011,836), yielding a mean 
of 3,344 UCE loci (2,137–3,489) per sample. The total number of 
UCE alignments that we used to generate the pseudoreference was 
4,106, and the mean length was 495 bp (149–2,167 bp). After align-
ing reads to the pseudoreference and quality filtering, there were 
7,861 SNPs including multiple SNPs per locus. After removing loci 
with more than 10% missing data across individuals, 3,168 SNPs 
remained. The unlinked SNP data set included 1,794 independent 
SNPs. Removing loci with missing data left 684 unlinked loci. In the 
phased pseudohaplotype sequence alignment data set used for the 

migrate-n analysis, 1,664 UCE alignments remained after removing 
loci with fewer than one (114 loci) and more than 10 PIS (16 loci; 
Figure S1).

3.2 | Mitogenomes: Genetic diversity, population 
structure and demographic inference

There were 36 unique mitochondrial haplotypes in the data set that 
included close relatives (n = 83), and 34 among the 58 unrelated 
individuals. All subsequent analyses were performed with the unre-
lated data set. Hd was high, at 0.977 (SD 0.008), and π was 0.00583 
(SD 0.0006). Phylogenetic analyses show that mountain treeshrews 
are a monophyletic group with two deeply divergent lineages, each 

F I G U R E  2   Population structure 
and migration models evaluated using 
migrate-n, with model rank shown below 
each numbered model. The best model 
according to Bayes factors is model 
4, followed by model 5. Log marginal 
likelihood values are listed in Table S5. 
MT, Mt Tambuyukon; MK, Mt Kinabalu; 
High, ≥2,000 masl; Low, <2,000 masl

F I G U R E  3   Median joining network of 34 mitogenome sequences in the “unrelated” data set. Haplotypes are numbered H1–H36; H4 and 
H16 are not included because they were removed when close relatives were trimmed from the data set. Dashed lines represent the number 
of base pair differences between haplotypes except in cases where the number of differences exceeds 40. Colours correspond to the two 
mountains (MT, orange; MK, blue). The two haplogroups are not shown to scale and are separated by 186-bp substitutions. Circle area is 
proportional to the number of individuals with each haplotype; the legend shows the size for one and 10 samples, respectively
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present on both mountains (Figure S2, partitions and substitution 
models in Table S2). Outgroup relationships were consistent with the 
phylogenetic hypothesis presented by Roberts et al. (2011). The av-
erage number of nucleotide substitutions per site between the two 
lineages was 0.013. The beast dating analysis suggests that the two 
mitochondrial lineages diverged ~450,000 years ago (95% highest 
posterior density [HPD] 346,000–631,900 years ago, Figure S3).

The median joining haplotype network (Figure 3) shows that 
the two mountain treeshrew haplogroups are present on both MT 
and MK. Three haplotypes are found on both mountains (Table S3). 
Including related individuals, haplogroups 1 and 2 are found in near 
equal proportion on MK and MT (16 and 14 individuals, respectively), 
while haplogroup 1 is more frequent on MT (46 out of 53 individuals; 
Figure 4). The AMOVA on the unrelated data set showed significant 
differentiation between the two mountains (FST = 0.133, p = .00812), 
with 13.3% of the variance accounted for by differences between 
mountains and 86.7% within mountains. To test our prediction of sig-
nificant differentiation across elevations, we then divided the popula-
tion into high- (≥2,000 masl) and low- (<2,000 masl) elevation groups 
on each peak. The results showed that 90.42% of the total variance 
is accounted for by within-group variation, and 9.58% among-group 
variation (FST = 0.096, p = .027). Pairwise comparisons showed signif-
icant differences between high-elevation MK and low-elevation MT 
(FST = 0.15, p = .023) and high-elevation MK and high-elevation MT 
(FST = 0.18, p = .013); all other comparisons were not significant.

We performed Tajima's D test on an alignment including all un-
related individuals (n = 57) and separately on alignments with in-
dividuals from each haplogroup (haplogroup 1, n = 43; haplogroup 
2, n = 14) and each mountain (MK, n = 25; MT, n = 32) because 
unaccounted for population structure can bias results even with 
high rates of migration among locations (Städler et al., 2009). In all 
cases the test was not significant, indicating a lack of evidence for 
recent population contraction, expansion, or selection. Similarly, in 

the Bayesian skyline plot analysis, the 95% HPD of the population 
change parameter included zero; therefore, we cannot reject the hy-
pothesis of zero demographic changes in the last 60,000 years.

3.3 | UCE loci: Genetic diversity

Pairwise kinship calculations revealed several groups of putatively 
related individuals. After removing first-order relatives (n = 22 with 
kinship ≥0.18) from the data set, 58 individuals remained, including 
33 from MT and 25 from MK. The nucleotide diversity of the fil-
tered UCE pseudohaplotype alignment used in the migrate-n analysis 
(1,664 concatenated UCE alignments) for all 58 unrelated mountain 
treeshrews was 0.0017 (SE 0.000022). The nucleotide diversity of 
the unfiltered alignment, including invariant loci and those with >10 
PIS (3,935 UCE alignments) was 0.0015 (SE 0.000016). Using the 
SNP data set with no missing data, average individual heterozygosity 
for all 80 individuals was 0.23 (SD 0.027), and the average inbreeding 
coefficient (FIS) was 0.012 (SD 0.12). For the 58 unrelated individu-
als, average heterozygosity was 0.23 (SD 0.027), and FIS was 0.019 
(SD 0.12). Bartlett's test revealed that the variances in observed and 
expected heterozygosity were not significantly different (K2 = 1.68, 
p = .2). Average FIS was higher on MK than on MT, but the difference 
was not significant (0.04 and 0.01 respectively, Welch two-sample t 
test p = .2). Using the data set with 10% missing data, the probability 
of two individuals having identical genotypes assuming siblings are 
present (pIDsib) was 1.54 × 10−199.

3.4 | Population structure

Both DAPC and structure indicated that the most likely number 
of population clusters was two and the second most likely was 

F I G U R E  4   Elevations sampled on Mt Kinabalu (900, 1,600, 2,200, 2,700 and 3,200 masl) and Mt Tambuyukon (900, 1,300, 1,600, 
2,000 and 2,400 masl) with the distribution of mitochondrial haplogroups per elevation shown below each transect line and SNP clusters 
above. Colours of each transect line correspond to localities on the inset map (dark blue, MK; light blue, Poring Hot Spring MK; orange, MT). 
Mitogenome pie charts indicate, for each elevation, the number of treeshrews sampled with a haplotype from mitochondrial haplogroup 
1 (light grey) and 2 (dark grey). SNP pie charts indicate for each elevation the proportion of ancestry assigned to cluster 1 (light grey) and 
cluster 2 (dark grey) by structure with K = 2, which was determined by the Evanno method to be the most likely number of clusters. The area 
of each circle is proportional the number of individuals sampled at each elevation
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three, as determined by BIC and the ΔK method, respectively. The 
ΔK method is biased toward K = 2 (Campana et al., 2011; Janes 
et al., 2017) and simulation studies have shown that the mean prob-
ability (MeanLnP(K)) output from structure performs better in sce-
narios with high gene flow and low FST (Latch et al., 2006). Because 
K = 3 produced the highest MeanLnP(K) in structure (Table S4a), we 
consider this a relevant model and show the proportion of individual 
membership in each cluster as defined by each of the two analyses 
for both K = 2 and K = 3 (Figure 5). Results with higher K values are 
shown in Figure S4. We also ran structure separately for individuals 
caught on MK and MT, with settings described above except we ran 
simulations for K = 1–5. We found no evidence of structure among 
MK individuals; MT individuals were divided into two clusters—one 
with individuals ≥2,000 masl and one with individuals <2,000 masl, 
with individuals of mixed ancestry at 2,000 masl (Table S4b,c).

Cluster membership is mostly concordant between DAPC and 
structure, except structure assigned mixed ancestry to many in-
dividuals while DAPC did not. This is not unexpected as previous 
studies have shown that DAPC may underestimate admixture 
(Frosch et al., 2014) while structure is more accurate at assigning 
mixed ancestry (Bohling et al., 2013). When K = 2, individuals at 
2,000 and 2,400 masl on MT form a separate cluster from low-ele-
vation MT + MK (Figures 4 and 5), with mixed ancestry individuals 
at 2,000 masl on MT. This shows that the most prominent popula-
tion subdivision does not separate the two mountains or high and 

low elevations on MK as we predicted; rather, high-elevation MT 
is distinct. For K = 3, the divisions are between high-elevation MT, 
low-elevation MT, and MK, with individuals at Poring Hot Spring on 
the eastern slope of MK (900 masl) and 2,000 masl on MT assigned 
mixed ancestry (Figure 5). This suggests that no significant substruc-
ture exists among MK individuals despite the greater elevational 
range on this mountain, and that gene flow occurs between MK and 
MT.

The PCA shows a similar pattern. PC1 (7% variation explained) 
separates the two mountains, with overlap among individuals at 
900 masl. PC2 (4% variation explained) partially separates individu-
als by elevation, with lower elevation individuals at the midline and 
right of centre, and high-elevation individuals on the left (Figure 6). 
The “horseshoe” shape of the plot is typical in isolation-by-distance 
(IBD) scenarios where genetic similarity decays with geographical 
distance (Novembre & Stephens, 2008). Because of the spatial pat-
tern evident in our PCA, we ran a spatial PCA (sPCA, Jombart, 2008), 
which explicitly incorporates spatial autocorrelation between sam-
ples and allows for the visualization of genetic structure in space. The 
results showed the greatest differentiation between high-elevation 
MT and MK, with weaker, intermediate differentiation separating 
individuals at low-elevation MT and Poring Hot Springs (Figure S5).

With K = 2, after removing individuals that could not be assigned 
to a structure cluster (cutoff qk value < 0.6), FST is 0.05 (p = .0001). 
The AMOVA showed that most variation (95%) is partitioned within 

F I G U R E  5   Cluster membership according to DAPC and structure for (a) K = 2 and (b) K = 3. For each analysis, K = 2 was the best-fitting 
number of clusters, followed by K = 3. Each horizontal line represents a single individual with shading showing how much of each's ancestry 
can be attributed to each cluster. Individuals are arranged from high-elevation Mt Tambuyukon to low-elevation Mt Tambuyukon followed 
by low-elevation Mt Kinabalu to high-elevation Mt Kinabalu. Elevations and mountains are labelled on the y-axis
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clusters and only 5% between them. With K = 3, removing individu-
als with qk values <0.6, FST between MK and low-elevation MT was 
0.035 (p = .001), between MK and high-elevation MT FST = 0.092 
(p = .0001), and between low-elevation MT and high-elevation MT 
FST = 0.065 (p = .0005) (Table 2a,b). The AMOVA showed that 94% 
of the variation is distributed within clusters, and 6% among them.

Including data for all 80 individuals, the Mantel test revealed 
a significant, positive correlation between genotypic distance and 
geographical distance (r = 0.287, p = .0001). Including only the 58 
unrelated individuals, the correlation was weaker but statistically 
significant (r = 0.05, p < .0001). The correlogram showed signifi-
cant positive autocorrelation between individuals at distances of 
200 m and less (r = 0.091, p r-rand ≥ p r-data = 0.0001) and be-
tween 200 m and 1 km (r = 0.036, p r-rand ≥ p r-data = 0.0001); 
autocorrelation was no longer significant at 2 km (r = −0.001, p r-
rand ≥ p r-data = 0.598). At subsequent distance classes (5, 10, 15 
and 18 km), individuals have greater genetic distance than expected 
at random (p r-rand ≤ r-data = 0.009, 0.0001, 0.0001 and 0.0001, 

respectively; Figure S6). The average geographical distance between 
pairs of first-order relatives (e.g., parent–offspring or sibling pairs) 
was 162.5 m, second-order relatives (e.g., half siblings or grandpar-
ents–grand-offspring pairs) was 1.2 km, third-order relatives was 
4.8 km, and between distant or “unrelated” individuals was 12 km 
(Table 1); this suggests that in a single generation, individuals on av-
erage are unlikely to disperse beyond 162.5 m. Differences between 
first and third, first and distant, second and distant, and third and 
distant relatives were significant (p < .05).

3.5 | Population and migration models

Model 4 (Figure 2) was the best fit model as determined by Bayes 
Factors in the migrate-n analysis, followed by Model 5 (Table S5); 
this was consistent across both runs of the program with alterna-
tive phasing. Model 4 divided the population into three groups: 
high-elevation MT, low-elevation MT, and MK, with high rates of 

F I G U R E  6   Principal components 
analysis plot with individuals caught on 
Mt Kinabalu shown in blue circles and 
Mt Tambuyukon in orange triangles. 
Individuals sampled at lower elevations 
are shaded with light colours and high 
elevation with dark, and each point 
is labelled with the sampling location 
elevation. PC1 explains 7% of the variance 
and PC2 explains 4%

TA B L E  2   Effective population sizes and pairwise FST of population clusters with (a) K = 3 and (b) K = 2

MK MT < 2,000masl MT> 2,000masl

(a) K = 3

MK (n = 22) 125 (105–152) 0.00120 0.00010

MT < 2,000 masl (n = 19) 0.035 202 (157–282) 0.00050

MT> 2,000 masl (n = 11) 0.092 0.065 48 (40–59)

MK + MT < 2,000 masl MT> 2,000 masl

(b) K = 2

MK + MT < 2,000 masl (n = 36) 180 (160–205) 0.0001

MT> 2,000 masl (n = 18) 0.050 57 (52–63)

Note: MK, Mount Kinabalu; MT, Mount Tambuyukon. Ne estimates are on the diagonal with 95% confidence interval in parentheses; FST estimates are 
below the diagonal, with associated p-values above the diagonal.
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bidirectional migration between all pairs (Table S6). Model 5 divided 
the population into high-elevation MT and low-elevation MT + MK 
with bidirectional migration (Figure 2). Across models, the mean mi-
gration rate from high-elevation MT to MK was greater than from 
MK to MT (1.3–19×, Table S6).

The results from neestimator suggest a larger effective popula-
tion size on MT (<2,000 masl + ≥2,000 masl) than MK despite less 
available habitat on MT (250 versus 125 breeding founders, respec-
tively; Table 2 and Supporting Information).

4  | DISCUSSION

4.1 | Levels of gene flow across elevations

Our results are not consistent with Janzen's hypothesis 
(Janzen, 1967), which predicts narrow elevational distribution and 
restricted gene flow across elevational gradients in tropical mon-
tane species (Ghalambor et al., 2006). We report evidence of high 
gene flow between MK and MT as well as between low and high 
elevations on both peaks, indicating that neither the lowland habitat 
connecting the two peaks, nor the steep elevational gradient across 
which mountain treeshrews occur on each peak, has significantly 
limited effective dispersal.

The KNP mountain treeshrew population is best described as 
comprising two or three clusters, but the primary subdivision does 
not correspond to the two peaks or separate high- and low-eleva-
tion MK as predicted. Rather, the summit region of MT was consis-
tently recovered as distinct in both structure and DAPC (Figure 5a). 
When dividing the population into three clusters, low-elevation 
individuals at Poring Hot Springs on the eastern slope of MK show 
mixed ancestry with low-elevation MT (Figure 5b). Additionally, 
the migrate-n analysis supports the division of individuals into 
three population clusters (high-elevation MT, low-elevation MT, 
and MK), with high migration rates between all pairs (Figure 2; 
Table S6). If gene flow were restricted due to limited elevational 
dispersal or selection against cross-elevation migrants, we would 
expect to find greater genetic differentiation on MK because of 
the broader elevational range and associated diversity of envi-
ronmental factors on this slope compared to MT. However, the 
summit of MT was consistently recovered as the most distinct 
population cluster while individuals caught along the entire eleva-
tional gradient on MK form a single cluster (Figures 4 and 5). This 
suggests that elevation and covarying environmental conditions 
are not the primary variables influencing mountain treeshrew ge-
netic structure in KNP.

The first prediction of Janzen's (1967) hypothesis, that topical 
montane species tend to have narrower elevational ranges than 
those in the temperate zone, has been shown to apply across tax-
onomic groups including endotherms such as birds (Ghalambor 
et al., 2006) and bats (McCain, 2009). However, McCain (2009) 
found that in rodents there was either no relationship between 
elevational range and latitude or range size increased with 

decreasing latitude. This finding could be explained by the pres-
ence of cryptic species pairs or genetic differentiation separating 
low- and high-elevation populations. Supporting this hypothesis, 
some studies of small mammals in Southeast Asia have found 
strong, cryptic genetic differentiation across elevations, such as in 
squirrels (den Hinckley et al., 2020; den Tex et al., 2010), shrews 
(Eldridge et al., 2018) and mice (Heaney et al., 2011; Justiniano 
et al., 2015). However, McCain (2009) hypothesized that rodents 
may cope with the lower temperatures associated with increasing 
altitude through behavioural adaptations. Our finding of high gene 
flow across a broad elevational extent in mountain treeshrews is 
not inconsistent with McCain's hypothesis. In addition, Hinckley 
et al. (in review) found that mountain treeshrews exhibit ecophe-
notypic changes associated with elevation, including significantly 
smaller ears and tails and denser hair at higher elevations; these 
patterns were consistent on both MT and MK. Hinckley et al. 
suggest that these phenotypic changes, in combination with be-
haviours including diurnal activity patterns and nesting, may allow 
the species to persist across broad environmental conditions, 
which is rare among small mammals in this landscape (Camacho-
Sanchez et al., 2019; Hinckley et al., in review; Nor, 2001). Further 
research is necessary to determine whether the phenotypic 
changes observed in mountain treeshrews in KNP are due to phe-
notypic plasticity, adaptive differentiation despite gene flow or a 
combination of these factors.

4.2 | Population genetic structure shaped by 
IBD and historical dynamics

The population genetic pattern observed is partly consistent with 
IBD, as evidenced by (i) the small, but significant, positive correla-
tion between pairwise geographical distance and genetic distance, 
(ii) spatial autocorrelation between samples drops off at a distance of 
2 km (Figure S6), and (iii) pairwise FST between the nonadjacent MT 
summit and MK clusters is greater than the value between neigh-
bouring clusters (Table 2a). High gene flow rates between adjacent 
demes across the landscape, with relatively short dispersal distances 
as suggested by the correlogram (Figure S6) and ANOVA (Table 1), 
could have generated the clinal pattern we observe (Figure 5); how-
ever, this does not explain the distinctiveness of the summit MT clus-
ter. The Euclidean distance between the lowest and highest sampled 
points on MK (~13.5 km) is greater than the distance between the 
lowest and highest sampling points on MT (~4.5 km), yet there is 
more population genetic differentiation on MT. This indicates that 
the structure we observe is not due to IBD or isolation-by-elevation 
alone, and that genetic similarity decays with geographical distance 
at unequal rates in this landscape (Figure S7a).

Historical population dynamics probably contributed to the ob-
served population genetic structure. Without data from other Bornean 
localities, it is difficult to determine what process(es) generated the 
pattern. However, we suggest a plausible scenario given known in-
formation about the relative ages of MT and MK and the degree of 
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divergence between the mountain treeshrew and its sister species. 
MT reached its current elevation earlier (~11–7 Ma) than MK (~1 Ma; 
Collenette, 1964; Hall, 1998; Liew et al., 2010). This suggests that MT 
was available for colonization prior to the split of mountain treeshrews 
from ruddy treeshrews ~4 Ma (Roberts et al., 2011). If mountain tree-
shrews were resident on MT prior to a second colonization event, this 
could explain the signature of two population clusters. We find high-
er-than-average genetic diversity among individuals at high-elevation 
MT despite its smaller habitat area (Figure 1a; Figure S7b), which is 
consistent with our hypothesis that this region maintained a relatively 
stable, or recently reduced, effective population size over time relative 
to MK. The lower rate of gene flow upslope to high-elevation MT rela-
tive to gene flow towards MK that we observed in the migrate-n analy-
sis (Table S6) may have preserved the signature of this cluster. It is not 
clear what factors may be limiting upslope gene flow, but one hypoth-
esis is that it is related to a significant shift in the plant community that 
occurs between 1,450 masl and the summit (van der Ent et al., 2018). 
Supporting this hypothesis, trapping success of mountain treeshrews 
and other small mammals is low from 1,500 to 1,800 masl, and in-
creases above 2,000 masl (Camacho-Sanchez et al., 2019). In addition, 
Hinckley et al. (in review) show differences in musculature related to 
mastication across elevations, and suggest that these differences may 
be due to changes in the plant community (i.e., there are fewer fruiting 
trees at high elevations) and a larger proportion of invertebrates such 
as beetles in the mountain treeshrew diet.

By contrast, the lack of differentiation across MK could have been 
influenced by an upslope shift at the mountain treeshrew's upper ele-
vational limit enabled by climate warming and upslope shifts in mon-
tane forest since the Last Glacial Maximum (LGM; Cannon et al., 2009; 
Hall et al., 2009). Upslope shifts in montane forest during this period 
of warming could have enabled range expansion at high elevations, in 
addition to range contraction at low elevations. Mountain treeshrews 
on MT probably did not experience a concurrent upslope range shift 
because MT has a much lower summit which, unlike the summit of MK, 
was never covered in ice (Hall et al., 2009). The lack of a population ex-
pansion signature in the mountain treeshrew mitogenome data could 
be explained by unrestricted gene flow between adjacent areas during 
expansion (Pierce et al., 2017). As predicted for a recent expansion, 
we find lower-than-average genetic diversity among high-elevation 
MK individuals (≥1,600 masl) in our SNP data using estimated effective 
migration surface modelling (Petkova et al., 2016) to visualize genetic 
diversity on the landscape (Figure S7b).

4.3 | Mito-nuclear discordance

The population genetic pattern inferred from our mitogenome data 
is discordant with the nuclear SNP data set, although it is not in-
consistent with a scenario of two colonization events to KNP. 
Phylogenetic analyses revealed two divergent mitochondrial line-
ages within mountain treeshrews; both lineages are found on both 
mountains, but haplogroups 1 and 2 are equally represented on MK 
while haplogroup 1 is more frequent on MT (Figures 3 and 4). As 

mentioned above, MT provided montane habitat earlier than MK. If 
KNP were colonized a second time by mountain treeshrews from the 
Crocker Range, this would explain the presence of two sympatric, 
divergent lineages within Kinabalu Park. The greater frequency of 
haplogroup 2 on MK could be explained by the closer geographical 
proximity of MK to the Crocker Range (Figure S8), combined with 
male-biased dispersal limiting the movement of haplogroup 2 from 
MK to MT. There is no information on dispersal differences between 
sexes in mountain treeshrews. Male-biased dispersal is common 
among mammals (Greenwood, 1980), but female-biased dispersal 
has been documented in the large treeshrew (Munshi-South, 2008). 
Lack of recombination in the mitochondrial genome would have re-
tained the signature of divergence between the two haplogroups 
whereas recombination in nuclear SNPs would result in genetic ad-
mixture between the two groups.

This pattern could also be the result of a single colonization 
event of two sympatric lineages that diverged elsewhere in Borneo, 
for example due to isolation in interglacial refugia and mixing during 
glacial maxima when montane forest was at its maximum extent 
(Cannon et al., 2009; den Tex et al., 2010). However, this scenario 
implies that the colonization of KNP by mountain treeshrews would 
have occurred after the divergence between the two lineages 
~450,000 years ago, which is relatively recent compared to the age 
of MT (at least 7 million years) and the age of the species (~4 million 
years). Additionally, multiple colonization events to MK have been 
inferred in other taxa, including plants in the genus Rhododendron 
(Merckx et al., 2015).

Gawin et al. (2014) documented a similar pattern in mountain 
blackeyes (Chlorocharis emiliae) in Borneo; they found two divergent 
mitochondrial haplogroups on MK, with one lineage sister to a lineage 
found on Mt Trus Madi, a mountain south of MK within the Crocker 
Range (Figure S8). The pattern inferred from SNP data in a subse-
quent study was not concordant, with a single lineage found on MK 
(Manthey et al., 2017). This similar pattern may indicate a common 
colonization history between mountain blackeyes and mountain tree-
shrews. Future studies should include broader geographical sampling 
of mountain treeshrews, including individuals from across the Crocker 
Range, to test the hypothesis of multiple colonization events and to 
determine the phylogeographical history of this species in Borneo.

4.4 | UCEs for fine-scale population genomics

Here, we show that sequence capture of ~5,000 UCEs yielded two 
highly informative data sets (i.e., SNPs and phased pseudohaplotype 
sequences) suitable for population genomics on a fine spatial scale. 
These data sets resolved patterns of fine-scale, weak population 
structure in mountain treeshrews within KNP, an area of ~754 km2. 
The SNP data set provided sufficient statistical power to identify 
individuals with high probability (pIDsib = 1.54 × 10−199), to identify 
putative family groups using pairwise kinship estimates, and to re-
veal patterns of population structure with low levels of differentia-
tion (Figure 5; Table 2).
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Although our results suggest that UCE loci may be sufficiently 
variable for population genomic studies, more research is neces-
sary to determine the substitution rate of these markers and its ef-
fect on demographic parameters derived from the site-frequency 
spectrum (Winker et al., 2018). Previous studies have suggested 
that the highly conserved cores of UCE loci are subject to strong 
purifying selection. While the strength of selection decreases 
and the substitution rate increases with distance from the core 
(Katzman et al., 2007), UCE-flanking regions may have lower di-
versity than other genomic markers, leading to an excess of rare 
alleles (Cvijović et al., 2018).

UCEs are valuable for studying species like the mountain 
treeshrew for which few genomic resources are available. RAD-
sequencing (RAD-seq) methods also do not require reference 
genomes and can generate an order of magnitude more loci than 
UCE-based methods; this dense genomic sampling enables inves-
tigation of both neutral and adaptive differentiation (Hohenlohe 
et al., 2010), which is particularly important for defining conser-
vation units (Funk et al., 2012). However, for inferences regard-
ing population structure and gene flow, it has been shown that 
fewer than 100 informative SNP loci are sufficient (von Thaden 
et al., 2020) and here we analysed 1,794 independent SNPs. 
Additionally, the average heterozygosity of our UCE-derived SNPs 
is 0.23, similar to that reported in RAD-seq studies of other small 
mammal populations, including mice of the genera Apodemus 
(0.28; Cerezo et al., 2020) and Peromyscus (0.148–0.239; Garcia-
Elfring et al., 2019).

In summary, although more research is needed into the substi-
tution rate of UCE loci and its effect on demographic inferences, 
our results show that UCE capture methods can be used for fine-
scale population genomics, providing an additional tool for study-
ing nongenome-enabled species. UCE capture produces data with 
similar information content and has several benefits over RAD-seq, 
including: (i) enabling the direct comparison of inferences drawn 
from the same set of loci across species, allowing conclusions to be 
drawn about the effects of historical processes on diverse taxa (Lim 
et al., 2020); (ii) offering repeatability such that studies can compare 
inferences for the same species across time and geographical regions 
(Harvey et al., 2016); and (iii) enabling the use of low-quality DNA, 
including DNA derived from historical museum specimens (Hawkins 
et al., 2016; Lim & Braun, 2016; Lim et al., 2020; Tsai et al., 2019).

4.5 | Conservation implications

As a tropical montane species, the mountain treeshrew may be 
impacted by GCC, which is predicted to shift montane communi-
ties in KNP upslope ~490 m by the year 2,100 (Camacho-Sanchez 
et al., 2018; Still et al., 1999) assuming mild Intergovernmental Panel 
on Climate Change scenarios (IPCC 2013, www.ipcc.ch/repor t/ar5/
wg1/). Although the factors that limit the mountain treeshrew at its 
lower elevational boundary are unknown, assuming that the spe-
cies tracks the predicted 490-m upslope shift—whether because of 

climatic limitations or ecological interactions with lowland species 
expanding upslope—we predict that it will experience range contrac-
tion. The species already occupies the upper elevational limits within 
KNP, so an upslope shift in the lower bound of its distribution could 
not be countered with expansion at its upper limit. The lack of strong 
population structure across elevations means that upslope dispersal 
of lower elevation mountain treeshrews on MK will probably not in-
crease extinction risk by introducing maladaptive genetic diversity 
(Weiss-Lehman & Shaw, 2019). However, reduction in available habi-
tat could make the species vulnerable.

We also predict that in this scenario of upslope habitat shifts, 
mountain treeshrews would maintain connectivity between MK and 
MT. However, the Crocker Range has few peaks above 1,400 masl, and 
connectivity between KNP and the rest of the Crocker Range could be 
severed (Figure S8). This highlights the importance of KNP as a future 
refugium for montane species, as it contains the highest peak in the 
region and the greatest high-elevation forested area. Conservation ef-
forts should focus on protecting forest habitat at 900 masl outside the 
park to facilitate gene flow and preserve genetic diversity.
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