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1  | INTRODUC TION

Hybridization is a major concern in conservation biology (Rhymer 
& Simberloff, 1996) but also a source of evolutionary innovation 
(Abbott et al., 2013; Arnold, 2015) and adaptive introgression (the 
introduction of genes from one evolutionary lineage into the gene 
pool of another) has been shown to play an important role in the evo-
lution and diversification of different clades (Burgarella et al., 2019; 
Hamilton & Miller,  2016; Oziolor et  al.,  2019; Suarez-Gonzalez 

et al., 2018). Thus, the identification of admixed individuals and the 
assessment of the levels of introgression are fundamental steps to 
study the effect of hybridization on populations. However, the de-
tection of these admixed individuals can be problematic when the 
parental species show limited phenotypic differentiation (Randi, 
2008). The ineffectiveness of morphological criteria in differenti-
ating cryptic hybrids or admixed individuals (Oliveira et  al.,  2008) 
promoted the use of highly polymorphic genetic markers, such as mi-
crosatellites or SNPs. The development of software programs based 
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Abstract
Detection of hybridization and introgression is important in ecological research as in 
conservation and evolutionary biology. STRUCTURE is one of the most popular soft-
ware to study introgression and allows estimating what proportion of the genome of 
each individual belongs to each ancestral population, even in cases where no refer-
ence sample from the ancestral nonadmixed populations is previously identified. In 
spite of its frequent use, some studies have indicated that ancestry estimates may 
not always be reliable. We simulated population data under different conditions with 
regard to the genetic differentiation between ancestral populations, number of loci 
considered, number of alleles per marker and hybridization rate, and analysed data 
with STRUCTURE. When reference samples were not included, the comparison of 
the known degree of admixture for each simulated individual and the value estimated 
with STRUCTURE revealed a strong underestimation of the level of introgression, 
classifying many admixed individuals as nonadmixed. This derives from an inaccurate 
estimation of the ancestral allele frequencies. When samples from the nonadmixed 
ancestral population were included as reference in the analyses, the bias in the esti-
mations was reduced. The most accurate estimates were obtained when potentially 
admixed samples were few in relation to reference samples. Thus, whenever possi-
ble, a very large proportion of nonadmixed reference samples should be included in 
admixture assessments and different approaches should be combined. The misesti-
mate of the amount of introgression can impair our understanding of the evolution-
ary history of species and misguide conservation efforts.
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on the analysis of panels of genetic markers and the implementation 
of Bayesian clustering models has facilitated the detection of hybrids 
and the assessment of introgression of genes of one species into the 
gene pool of another.

One of the most widely used programs for these analyses is 
STRUCTURE (Pritchard et al., 2000) which allows identification of 
the origin of the genome of each individual. After choosing a K value, 
i.e., the number of populations, STRUCTURE subdivides the sample 
into K different clusters - trying to minimize departures from Hardy-
Weinberg equilibrium and linkage disequilibrium - and estimates for 
each individual the proportion of the genome that could originate 
from each cluster (Barilani et al., 2007). In this way, STRUCTURE 
is very efficient at separating populations and identifying admixed 
individuals. A Scopus search (on 26 June 2019) for articles citing the 
original paper of Pritchard et  al.  (2000) and containing the words 
‘hybrid*’ or ‘introgression’ in the title, abstract or keywords returned 
a total of 3,446 articles, highlighting the popularity of the software 
to detect hybridization and population admixture.

However, the power of STRUCTURE to accurately estimate the 
amount of introgression has been questioned as it could underes-
timate the number of admixed individuals (Randi, 2008; Sanchez-
Donoso et al., 2014; Sanz et al., 2009). The main limitation seems 
to be related to the detection of old admixture as opposed to F1 hy-
brids and first generations backcrosses (Oliveira et al., 2008). It has 
been suggested that estimates of the amount of introgression could 
be improved by increasing the number of loci (Pritchard et al., 2000; 
Randi, 2008; Vähä & Primmer, 2006) and using both linked and un-
linked markers (Lecis et al., 2006), as this could enable a better as-
signment of admixed individuals in separate genotypic classes and 
the identification of past events of hybridization. The use of high 
number of loci derived from genome-wide data increases resolution 
in the detection of varying levels of introgression by identifying re-
gions of the genome of different origin (Gómez-Sánchez et al., 2018). 
Unfortunately, this is not always feasible due to the lack of a refer-
ence genome, or due to a trade-off between costs and number of 
specimens to analyse. In order to characterize population variability, 
large numbers of samples may need to be studied, making genomic 
approaches unaffordable and, despite technical advances, studies 
with reduced number of loci continue to be frequent in day-to-
day studies of hybridization and admixture (for example, see Alacs 
et al., 2010; Arias et al., 2019; De Barba et al., 2017; Sujii et al., 2019). 
In addition, large numbers of unmapped markers are not necessarily 
an advantage for the study of ongoing hybridization because they 
could yield redundant information if they are in complete linkage.

Another factor affecting the performance of STRUCTURE is the 
sampling scheme, i.e. whether or not samples of each parental popu-
lation or species are similar in size, and the phylogenetic relationships 
between the two species (Neophytou,  2014; Puechmaille,  2016). 
A previous study using empirical data of populations with known 
ancestry showed that STRUCTURE outperforms other common 
approaches in the identification of admixed individuals (Bohling 
et al., 2013). However, this study emphasizes the importance of in-
cluding in the analyses a portion of individuals that can be a priori 

diagnosed as nonadmixed for the two parental classes and this may 
not always be feasible. In many studies genetic analyses are carried 
out to identify potentially admixed individuals without previously 
defining reference samples (for example, see Godinho et al., 2011; 
Muñoz-Fuentes et al., 2007; Oliveira et al., 2008; Ortego et al., 2017; 
Trigo et al., 2013). This can be particularly important in cases with 
high levels of hybridization and persistent introgression throughout 
the distribution range, or in cases where introgression takes place in 
geographically structured populations for which reference samples 
from another population may not be appropriate (for example, see 
Glover et al., 2017; Lavretsky et al., 2019; Sullivan et al., 2016).

In this study we used simulations to determine the accuracy of 
STRUCTURE in the estimation of the individual level of introgres-
sion when nonadmixed reference individuals were not available. We 
assessed the importance of the number and polymorphism of the 
loci used, the divergence between the ancestral populations and dif-
ferent rates of hybridization between them. We also studied how 
adding appropriate reference samples impacts the reliability of the 
estimates. Our goal was to identify ways to improve the accuracy of 
the estimates of the degree of introgression.

2  | MATERIAL S AND METHODS

We carried out simulations of asymmetric gene flow from one pop-
ulation to another to reduce complexity and to facilitate analyses 
because the allele frequencies for one of the populations would not 
change over time. However, this is not an uncommon situation. Some 
examples of this kind of gene flow are the hybridization between 
domestic and vulnerable wild species (Godinho et al., 2011), admix-
ture between a rare species and an abundant one (An et al., 2017), 
restocking of game species with farmed animals of alien origin 
(Sanchez-Donoso et al., 2014), or directional gene flow as a result of 
the biology of the species hybridizing (Muñoz-Fuentes et al., 2007).

2.1 | Simulation of ancestral populations

We used the software easypop v. 2.0.1 (Balloux,  2001) to simulate 
pairs of diploid random mating populations, genotyped for 200 un-
linked loci assuming different levels of polymorphism, with (a maxi-
mum of) either two, five or 10 alleles per locus. Mutation rate for 
markers with five or 10 alleles was set at 10–3 and for markers with 
two alleles at 10–8, as commonly assumed for microsatellites and 
SNPs (Drake et al., 1998; Ellegren, 2004; Payseur & Nachman, 2000). 
We assumed a mutation model (K-allele model: KAM) for markers 
with two alleles: each allele had the same probability to mutate 
to the other allelic state. We used a mixed model including single 
step mutation model (SSM) for markers with up to five or 10 alleles, 
with a proportion of 0.3 of KAM events (Ellegren, 2004). We gen-
erated between 700 and 5,000 individuals per generation and ran 
the simulations for at least 1,000 generations to assume a long time 
of separation between the populations and approach mutation-drift 
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equilibrium and stable differentiation. We generated 100 pairs of 
populations for each kind of marker and with genetic differentia-
tion, measured as FST, around 0.05, 0.1 and 0.2. Thus, we simulated 
900 pairs of populations genotyped for 200 loci each (3 kinds of 
markers × 3 levels of differentiation × 100 replicates = 900 pairs of 
populations). Parameters used for the runs are reported in Table S1. 
For details of the simulations see Supporting Information, Figures S1 
and S2.

2.2 | Simulation of allele introgression

We wrote a script in Python 2.7 to simulate different hybridization 
rates and to subsample a random subset of individuals from each 
population to be analysed with STRUCTURE (see Figure  1 for a 
schematic representation of the simulations). Population A was 
where admixture took place due to some individuals arriving from 

population B. The goal of the analyses was to assess if it was pos-
sible to correctly estimate the degree of introgression in individuals 
sampled from the population A using STRUCTURE. Hybridization 
rate, that is the proportion of breeders originating from population B 
that contributed to the offspring of population A every generation, 
was around 1% (0.01) or 5% (0.05). Although high, rates of hybridi-
zation this high have been described for diverse taxa (for example, 
see Lavretsky et al., 2019; Muñoz-Fuentes et al., 2007; Nussberger 
et al., 2014). A key factor here is that we assume recurrent hybridiza-
tion every generation and that admixed individuals do not have a re-
duced fecundity so that they are able to freely interbreed with other 
individuals in population A. To initiate the simulations (at generation 
0), the program randomly selected 1,000 individuals from popula-
tions A and B from one of the 100 initial pairs of populations gener-
ated with Easypop for a given combination of FST and type of marker.

For 10 generations, the programme generated the same num-
ber of individuals (1,000) by selecting two parents from the previous 

F I G U R E  1   Pipeline to simulate 
introgression and subsampling for 
STRUCTURE analyses. First, 100 pairs of 
populations for each set of cases (pairwise 
FST = 0.05, 0.1 or 0.2, typed at 200 
marker loci with two, five or 10 alleles) 
were simulated with Easypop. For 10 
generations in population A, we randomly 
selected pairs of genotypes from the 
previous generation in population A 
or from population B according to 
the hybridization rate, and generated 
genotypes of 1,000 offspring. Finally, we 
randomly subsampled 100 individuals 
from each population A and B (with 
genotypes for 10, 30 or 100 randomly 
chosen loci) and genotypes were analysed 
in STRUCTURE. From the output of 
this program, we extracted estimates of 
ancestry and compared to the real values 
derived from the proportion of ancestry 
from population A in the simulations (see 
text) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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generation. Each parent was randomly selected from population A 
with a probability of (1  −  m), where m was the hybridization rate 
(0.01 or 0.05); otherwise, the parent was randomly chosen from 
population B (geneflow was unidirectional from B to A). The geno-
type of the offspring was obtained by randomly selecting one of the 
two alleles from each parent at each locus with equal probability; 
loci were independent. For each individual, we calculated the pro-
portion of the genome belonging to population A (qreal): for individ-
uals originating from population B, this proportion was qreal = 0.0; 
for individuals from population A at generation 0, this proportion 
was qreal = 1.0; for subsequent generations, the proportion was the 
average of the values of the two parents. To confirm that the script 
was working as expected, we calculated the level of introgression 
expected after 10 generations in the different scenarios as in Verdu 
and Rosenberg (2011). Indeed, the value corresponded to the aver-
age level of introgression per individual in population A.

At the tenth generation, a random subsample of 100 individual 
genotypes was taken both from population B and from the intro-
gressed population A to be analysed with STRUCTURE. In these 
subsamples, the number of loci was reduced to 10, 30 or 100 loci 
chosen at random. The data were used to generate an input file for 
STRUCTURE. As a result, 5,400 runs of STRUCTURE were carried 
out with 200 genotypes each (100 from the admixed population A 
and 100 from population B): three different values of FST (0.05, 0.1 
and 0.2)  ×  three kinds of markers (two, five or 10 alleles)  ×  three 
numbers of loci (10, 30 and 100) × two hybridization rates (1% and 
5%) × 100 replicates (100 pairs of populations simulated in Easypop 
for each set of conditions with regard to FST and type and number 
of loci).

The script for these simulations is available at https://github.
com/sarar​vg/intro​gress​ion_struc​ture. This script was slightly mod-
ified for subsequent analyses.

2.3 | Analysis of simulated data sets

The simulated data were analysed in structure v. 2.3.4 under the 
admixture model, as each individual may have ancestry in both ini-
tial populations, with correlated allele frequencies. We also carried 
out about 15% of the STRUCTURE runs under the independent al-
lele frequency model but results were practically identical (data not 
shown) and we decided to focus on the first model. Analyses were 
run without population or location information, i.e., with the options 
USEPOPINFO and LOCPRIOR set to 0, in order to allow assignments 
based only on genetic information. INFERALPHA was set to 1 to let 
STRUCTURE infer α (the relative admixture levels between popula-
tions) from the data. K was set to 2 to try to separate the two initial 
populations. After visually confirming that this was enough for con-
vergence, runs were carried out using 30,000 burnin steps followed 
by 100,000 iterations of MCMC, with only one replicate for each 
data set. We prepared a script in Python to extract the estimated 
proportion of the individual's genome corresponding to population 
A (qSTRUCTURE) from the STRUCTURE output.

We graphically compared qreal and qSTRUCTURE with the package 
ggplot2 (Wickham, 2009) using r v. 4.0.2 (R Core Team,  2020) in 
rstudio v. 1.3.959 (RStudio Team, 2020). All statistical analyses were 
carried out using the same versions of r and rstudio. We tested if 
qSTRUCTURE estimates were significantly higher than qreal values by 
performing a Wilcoxon signed rank test after excluding individu-
als from population B, with the function wilcox.test() from the coin 
package (v.1.3.1, Hothorn et  al.,  2008). We tested for a linear re-
lationship between qreal and qSTRUCTURE for individuals sampled in 
population A through linear regressions with the function lm(). We 
visually examined the normal distribution of the residuals of the re-
gressions and only reported results for the cases in which this re-
quirement was fulfilled. In these cases, we used generalized linear 
models to test if the absolute difference between qreal and qSTRUCTURE 
depended on FST and on the number of alleles, both included in the 
model as explanatory variables. We run these models under a beta 
distribution with the function betareg() from the betareg package 
(v. 3.1.2, Zeileis et al., 2012). As the response variable included 0 
and 1, we applied the transformation suggested by Smithson and 
Verkuilen (2006): y′ = [(y * (n − 1) * 0.5)/n], where n is the sample size. 
We visually checked the models for homoscedasticity and normality 
of the residuals.

Potential over- or underestimation of the proportion of genome 
belonging to population A could be related to an inaccurate estima-
tion of the ancestral allele frequencies for populations A and B. To 
visualize changes in the allele frequency estimates, we carried out 
100 additional runs of STRUCTURE sampling individuals at gener-
ations 0, three, six and 10 of the simulations (this was done for a 
single case, i.e., FST = 0.1, 30 loci with 10 alleles and hybridization 
rate of 5%). From the output, we extracted allele frequencies esti-
mated for all loci for the ancestral populations A and B. The matrices 
corresponding to both populations were compared to the true allele 
frequencies calculated from the populations generated by Easypop, 
before admixture started. For the comparison we used a distance 
calculated as the sum of the squared differences between each pair 
of allele frequencies (frequency for one allele at one locus in the an-
cestral population minus the frequency estimated by STRUCTURE), 
divided by the number of loci.

To evaluate if ancestry estimates obtained with STRUCTURE 
improved with the inclusion of reference samples, we carried out 
additional simulations for four cases (FST  =  0.1, 30 loci with five 
and 10 alleles, and both hybridization rates) but now the sample 
for population A included 10% or 30% of individuals from the an-
cestral population (generation 0). We run the analyses without pro-
viding information about the locality or providing this information 
(USEPOPINFO option, PopFlag was set to 1 only for individuals 
belonging to the ancestral population A to use them as reference). 
For the same cases we also tested the effect of activating the 
POPALPHAS option to infer α for each population separately, 
which is suggested in cases of strong asymmetric admixture in the 
STRUCTURE manual. We tested with generalized linear models how 
the differences between qreal and qSTRUCTURE for the samples of the 
admixed population A were affected by the proportion of samples 

https://github.com/sararvg/introgression_structure
https://github.com/sararvg/introgression_structure
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used as a reference (0%, 10% or 30%), number of alleles (five or 10) 
and the use of the USEPOPINFO and POPALPHAS options.

We also assessed the reliability of estimates obtained with 
STRUCTURE when almost all samples included in the run were used 
as reference and the introgression was assessed in just a few target 
individuals. We selected 100 individuals representing the full range 
of qreal values (evenly distributed from 0 to 1). Twenty groups of five 
of these individuals were randomly selected without replacement 
and analysed together with 100 samples from A before admixture 
and 100 samples from B (for FST = 0.1) using 30 or 100 markers of 
five or 10 alleles. This process was repeated 10 times. The values of 
qreal and qSTRUCTURE were then compared for the target individuals.

To confirm the importance of using appropriate reference sam-
ples, we analysed data from a natural population. We used a data set 
of wild common quails (Coturnix coturnix) and game farm quails from 
Sanchez-Donoso et  al.,  (2014), genotyped at nine autosomal mi-
crosatellite loci. A previous study had shown that game farm quails 
used for restocking were a genetically diagnosable mix of common 
and Japanese quails (C. japonica; Sanchez-Donoso et al., 2012). We 
randomly selected genotypes from 100 wild quails from NE Spain 
obtained from 2007–2010 and analysed them in STRUCTURE to-
gether with 52 quails from game farms to assess the impact of the 
restocking on the natural populations. Afterwards, 10 samples col-
lected in the same area in 1996–1997, before most releases of farm 
quails for hunting, were added as reference common quails free of 
introgression. The analyses were conducted using POPINFO and 
POPALPHAS. We tested if STRUCTURE suggested lower degree of 
admixture in the wild population in the absence of reference sam-
ples by performing a Wilcoxon signed rank test after excluding farm 
and reference individuals.

Finally, in order to assess if the biases detected when analysing 
the data with STRUCTURE were common to other programs also 
used to assess introgression, we also compared qreal to estimates of 
q obtained with admixture v. 1.3.0 (Alexander & Lange, 2011), ohana 
v.1.0 (Cheng et al., 2017) and snmf v. 2.0 (Frichot et al., 2014). We 
used default parameters and K was set to 2. For Ohana, the max-
imum number of steps was set to 130,000 to simulate the itera-
tions used in STRUCTURE and for sNMF alpha was set to 0.5. Since 
some of these programs are designed for analyses of markers with 
two alleles (SNPs), the comparisons were restricted to the cases of 
FST = 0.1, 100 loci with two alleles and hybridization rates of 1% and 
5%.

3  | RESULTS

We graphically compared the proportion of the genome coming from 
population A as estimated by STRUCTURE (qSTRUCTURE) with the real 
values (qreal, Figure 2). Each plot represents 100 runs of STRUCTURE 
with 200 genotypes, resulting in 20,000 pairs of values of qSTRUCTURE 
and qreal. Ideally, if the estimates of q by STRUCTURE precisely cor-
responded to the real values, all points should fall on the diagonal 
of the diagrams. As expected, increasing the number of loci and the 

number of alleles per marker improved precision (reduction in the 
variance) in the estimates of qSTRUCTURE and, to a lesser degree, it also 
improved accuracy (similarity between qSTRUCTURE and qreal values). 
At the same time, comparing cases with the same number of loci 
and alleles per marker, qSTRUCTURE values showed lower variance as 
the divergence level between the hybridizing populations increased 
(e.g., Figures S3a versus S4a). However, the comparison of qSTRUCTURE 
and qreal revealed systematic biases.

Considering a hybridization rate of 1% (Figure 2a, S3a and S4a), 
for markers with two alleles, qSTRUCTURE estimates tended to be quite 
independent from qreal, forming scattered clouds of points (meaning 
that STRUCTURE provided a poor assessment of the ancestry), ex-
cept when the number of loci was 100 and the genetic differentia-
tion was strong (Figure S4a). When the number of alleles per locus 
was 5, estimations using 10 or 30 loci were not reliable either and 
had a large variance. The consistency of the estimates increased no-
tably with the use of 100 loci when FST was 0.1 or 0.2 (Figure 2a and 
S4a). In the cases of markers with 10 alleles, in general, estimations 
started to improve from 30 loci for all values of FST, with reduced 
variance in qSTRUCTURE values. However, even in the cases with the 
lowest variance, qSTRUCTURE tended to be larger than qreal (Figure 2a).

With a hybridization rate of 5% (Figure  2b, S3b and S4b), the 
entire population A was admixed and no pure individuals were left, 
i.e., no individuals whose genomes derived solely from the ancestral 
population; the population had turned into a hybrid swarm. Although 
qreal values were always smaller than 0.85, qSTRUCTURE values tended 
to be higher, identifying many admixed individuals as nonadmixed 
(qSTRUCTURE close to 1) and therefore underestimating the magnitude 
of the introgression in the population (Figure 2b, S3b and S4b).

The Wilcoxon signed rank test confirmed that qSTRUCTURE values 
were significantly higher than the corresponding qreal (p < 10–16) for 
individuals from population A, except in five cases in which qSTRUC-

TURE was practically uninformative (Figure 2a: FST = 0.1, hybridization 
rate of 1%, 10 markers with two alleles; Figure S3a: FST = 0.05, hy-
bridization rate of 1%, 10 markers with two and five alleles, as well 
as 30 markers with two alleles; Figure S3b: FST = 0.05, hybridization 
rate of 5%, 10 markers with two alleles). This implies that there was 
a tendency to overestimate the proportion of the genome from the 
ancestral population in practically all cases (qSTRUCTURE > qreal). A sig-
nificant linear relationship between qreal and qSTRUCTURE was found 
in nine cases, when 100 loci with five alleles (only for a high hybrid-
ization rate of 5%) or 10 alleles were used (Figure S5), and in all nine 
cases the regression line was above the diagonal (intercept signifi-
cantly higher than 0, p < 10–16). The fact that in the other cases no re-
lationship could be found between qSTRUCTURE and qreal highlights the 
limited power of analyses with reduced number of loci and alleles.

We used generalized linear models to assess both the effect of 
the degree of differentiation between the ancestral populations 
(FST) and the number of alleles per marker on the absolute differ-
ence between qSTRUCTURE and qreal (the bias in the inference of q) for 
the two hybridization rates and considering 100 loci. Both variables 
proved to have a highly significant effect (p < 10–16). The increase in 
genetic differentiation showed the stronger effect in reducing the 
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F I G U R E  2   Individual proportion 
of genome belonging to population A 
estimated with STRUCTURE (qSTRUCTURE) 
compared to the real proportion (qreal) 
calculated during the simulations. 
Simulations of admixture were conducted 
for two populations differentiated with 
FST = 0.1. Each panel represents 20,000 
pairs of values, 10,000 pairs originating 
from population A and 10,000 from 
individuals from population B (100 runs 
with 100 individuals from each one of 
the two populations). If the estimates 
of STRUCTURE precisely corresponded 
to real values, points should lay on the 
diagonal. (a) hybridization rate of 1% 
per generation; (b) hybridization rate 
of 5% [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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difference between the two q values (Table 1), therefore improving 
STRUCTURE estimates, but having markers with more alleles also 
helped.

The degree of overestimation of q by STRUCTURE can be better 
appreciated in the distribution of qSTRUCTURE − qreal for population A 
(Figure 3, S6 and S7). While the overestimation was limited when the 
hybridization rate was 1%, it dramatically increased when the rate 
was 5%. We compared the distribution of qreal and qSTRUCTURE for an 
example case (FST = 0.1, 30 markers with 10 alleles) for both hybrid-
ization rates (Figure 4). Although the two hybridization rates resulted 
in very different populations with regard to the level of introgression 
(see qreal in Figure 4), the results obtained with STRUCTURE were 
almost identical (see qSTRUCTURE), suggestive of a relatively low intro-
gression, and showing that STRUCTURE was unable to differentiate 
the two cases.

The allele frequencies estimated by STRUCTURE for population 
A were progressively diverging from the ancestral as the number of 
generations of introgression increased (Figure  5). At generation 0, 
before any admixture, the estimates of allele frequencies for popu-
lations A and B were similar to the frequencies calculated from the 
ancestral populations. The distances in this case were not 0 because 
the estimates obtained by STRUCTURE were based on subsamples 
of the populations, resulting in sampling errors. As introgression in-
creased the number of alleles from population B into population A 
in subsequent generations, STRUCTURE estimates of the allele fre-
quencies in population A diverged more strongly from the ancestral 
ones, while estimates of the allele frequencies for population B re-
mained unaffected. As estimations of q are associated to the inferred 
allele frequencies, the inaccuracy in the ancestral allele frequency 
estimates could lead to the observed overestimations in qSTRUCTURE 
for individuals originating from population A.

A possible solution to improve accuracy in the estimates of the 
allele frequencies could be the inclusion of reference individuals 
from the ancestral population A. Generalized linear models showed 
that (with a hybridization rate of 5%) the accuracy of qSTRUCTURE es-
timates improved by increasing the proportion of reference indi-
viduals and the number of alleles per marker, as well as activating 
the POPALPHAS option and marking reference individuals with 
USEPOPINFO (Table 2; Figure 6 and S8). However, qreal and qSTRUC-

TURE were still very different (Figure 6). When the hybridization rate 

was lower (1%) the effect of including reference samples was not ob-
vious, and the generalized linear model could not be fitted because 
the model assumptions were not fulfilled.

Despite the improvement in the estimates with the inclusion of 
reference individuals, the biases were still very apparent even in the 
case when 30% of the individuals from A corresponded to reference 
samples (Figure 6) and qSTRUCTURE values were still significantly higher 
than the corresponding qreal (p < 10–16). This could be due to inher-
ent biases in STRUCTURE or difficulties in the inference of the an-
cestral frequencies when a large proportion of the samples derived 
from the admixed population. To investigate which was the case, we 
compared qreal and qSTRUCTURE obtained when analysing small sets of 
5 admixed individuals with 100 samples from A before admixture 
and 100 samples from B. The results (Figure  7) show that the bi-
ases in the estimates of qSTRUCTURE practically disappeared. Variance 
of qSTRUCTURE estimates was quite large when using 30 markers but 
centred around the corresponding qreal values (along the diagonal 
in the figures), but still qSTRUCTURE values were significantly higher 
than qreal (p < .003). As expected, using 100 markers greatly reduced 
this variance and with 10 alleles qSTRUCTURE and qreal values were 
not significantly different (p-value = .510). These results imply that 
STRUCTURE estimates were not intrinsically biased and including a 
very large number of reference samples and high number of markers 
helped to reduce biases in the estimates.

The analysis of a data set from a natural population of common 
quails that experienced introgression from farm quails showed the 
same pattern when we added reference samples belonging to the 
same population but from before most of the restocking campaigns 
(Figure S9). The q values estimated after adding reference showed 
more admixture than those estimated without adding a proper ref-
erence for the wild population (Wilcoxon signed rank test, p < 10–6). 
This result confirmed the pattern observed in the simulations.

Given the biases observed with STRUCTURE, we carried out 
additional analyses with simulated data corresponding to ances-
tral populations differing by FST  =  0.1 and 100 biallelic loci with 
ADMIXTURE, Ohana and sNMF to assess if the same biases were 
present in all cases. We graphically compared results from the four 
programs and STRUCTURE exhibited the worst performance under 
the set of conditions that we evaluated (Figure S10). The Wilcoxon 
signed rank test confirmed that q values were not overestimated 

Response 
variable

Hybridization 
rate

Explanatory 
variables Estimates z p

|qSTRUCTURE − qreal| 1% (intercept) −2.541 −300.71 <2e−16

FST −1.007 −26.93 <2e−16

Number of alleles −0.014 −14.72 <2e−16

|qSTRUCTURE − qreal| 5% (intercept) −0.838 −109.26 <2e−16

FST −0.943 −27.98 <2e−16

Number of alleles −0.0129 −15.4 <2e−16

Note: The two factors have a significant effect. We used 100 markers with five or 10 alleles and the 
two rates of hybridization.

TA B L E  1   Generalized linear models 
testing the effect of FST and number 
of alleles over the absolute difference 
between qreal and qSTRUCTURE for samples 
from the admixed population A
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with ADMIXTURE, Ohana and sNMF when the hybridization rate 
was 1%.

4  | DISCUSSION

Our results show that when appropriate reference samples are 
not included in the analyses, ancestry estimates provided by 
STRUCTURE can be very biased. In fact, the results provided by this 
software can be very similar even when comparing populations with 
completely different levels of introgression (Figure 4).

When populations experience hybridization and admixture during 
multiple generations, the proportion of the genome deriving from the 
ancestral local population tends to be overestimated by STRUCTURE, 
leading to an underestimation of the real degree of introgression and 
of the number of admixed individuals. Although the precision of the 
ancestry estimates provided by STRUCTURE tends to improve with 
higher number of markers and alleles (as suggested by previous stud-
ies; McFarlane & Pemberton, 2019; Vähä & Primmer, 2006), this in-
crease in precision does not correspond to an increase in accuracy and 
similar biases are observed using a small or a larger number of markers. 
The overestimate is particularly extreme in scenarios of hybrid swarms, 

F I G U R E  3   Density plots of 
qSTRUCTURE − qreal for individuals from 
population A. Simulations were carried 
for a differentiation of FST = 0.1 between 
the ancestral populations. (a) hybridization 
rate of 1%; (b) 5%. Data should ideally 
distribute around value 0 (marked with 
a vertical line). However, STRUCTURE 
analyses tended to overestimate the 
proportion of genome belonging to 
population A (qSTRUCTURE − qreal), being 
the overestimation bigger with higher 
hybridization rate [Colour figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  4   Density plots for qreal (a) and qSTRUCTURE (b) resulting from hybridization rates of 1% and 5%). Simulations were carried for a 
degree of differentiation between the ancestral populations (FST) of 0.1 and 30 loci with 10 alleles. The values around q = 0 corresponded to 
individuals from population B, while the rest reflect the admixed population A. Although qreal indicated different biological situations for the 
two hybridization rates (a), with very different number of nonadmixed A individuals (q close to 1), qSTRUCTURE values suggested that the two 
situations resulted in similar introgression (b) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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as simulated with a hybridization rate of 5%: while none of the individ-
uals was free of introgression, the estimation offered by the program 
suggested that purebred individuals were majority in the sample.

The poor performance of STRUCTURE under the simulated 
scenarios could impact the interpretation of admixture patterns in 
deeply introgressed populations, affected by various generations of 
hybridization, as in contact zones (Baldassarre et al., 2014; Johnson 
et  al.,  2015; Ortego et  al.,  2018). Extensive admixture could also 
occur in other cases, such as in the intercrossing between wild and 
domestic species, which have been coexisting for centuries or de-
cades, or between different wild species that become in contact 
after a long time of evolution in isolation (Beaumont et  al.,  2001; 
Burgarella et  al.,  2018; Glover et  al.,  2017; Mckelvey et  al.,  2016; 

Scarcelli et al., 2017). It may seem that a hybridization rate of 5%, as 
in our models, is unlikely to exist in nature. However, similar values 
have been reported in the literature based on the identification of F1 
hybrids (Lorenzini et al., 2014; Muñoz-Fuentes et al., 2007; Pacheco 
et al., 2017; Sullivan et al., 2016).

The limitations and the poor performance of STRUCTURE in 
admixed populations were already in part highlighted in the recom-
mendations of Pritchard et al.  (2000) about a proper utilization of 
the software to obtain reliable ancestry estimates. These authors 
indicate that, in cases of extensive admixture, STRUCTURE cannot 
estimate ancestral allele frequencies and it cannot give accurate es-
timates of q because of the high variance in how many of the indi-
vidual's alleles derive from one or the other population. Our results 
confirm this and show that introgression leads to poor estimates of 
the ancestral allele frequencies, as we observe how the allele fre-
quencies estimated for the ancestral population were increasingly 
different from the real ancestral frequencies (Figure  5), reflecting 
the allele frequencies for an already admixed population. The biases 
in the estimates of ancestry persist even in the cases with 100 loci of 
high polymorphism (Figure 2), suggesting that the estimation of an-
cestral allele frequencies may not be corrected just by increasing the 
number of unlinked loci. After repeated introgression during several 
generations, STRUCTURE may be unable to reliably reconstruct an-
cestral allele frequencies. Including purebred reference individuals 
in the data set resulted in a larger improvement in the estimates of q 
than just increasing the number of markers. However, even replacing 
30% of the individuals from the admixed population A by reference 
individuals was not enough to completely remove the bias (Figure 6) 
and the best estimates were obtained when analysing just a few tar-
get individuals together with many reference individuals (Figure 7).

In order to develop cost-effective genetic tools for the assess-
ment of introgression, efforts have been concentrating in the iden-
tification of the most suitable combination of markers. A reduced 
number of informative loci with high diagnostic power could be as 
effective as a high number of less informative loci, indicating that 
the discriminating power could be more important than their num-
ber (Oliveira et al., 2015; Randi et al., 2014). However, it is not com-
pletely clear what would be the best strategy to identify the most 
informative loci without previous data on marker variability across 
populations. On the other hand, in our simulations we considered 

F I G U R E  5   Distance between estimates of ancestral allele 
frequencies obtained with STRUCTURE and their real values 
for populations A and B as introgression of alleles from B to A 
advanced. A total of 100 STRUCTURE estimates of ancestral allele 
frequencies were obtained at generations 0, three, six and 10. In 
population B, estimates corresponded closely to the real values in 
all generations. For the admixed population A, divergence from the 
ancestral allele frequencies increased with introgression showing 
that STRUCTURE did not correctly estimate ancestral allele 
frequencies [Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  2   Generalized linear models explaining the differences between qreal and qSTRUCTURE for samples from the admixed population A

Response variable Hybridization rate Explanatory variables Estimates z p

|qSTRUCTURE − qreal| 5% (intercept) −0.863 −140.89 <2e−16

Reference −3.432 −205.56 <2e−16

Number of alleles −0.014 −19.32 <2e−16

USEPOPINFO (activated) −0.133 −33.92 <2e−16

POPALPHAS (activated) −0.499 −140.03 <2e−16

Note: The explanatory variables were the proportion of samples used as a reference (0%, 10% or 30%), number of alleles of the markers (five or 10) 
and use of the USEPOPINFO and POPALPHAS options in STRUCTURE for simulations using 30 loci and a hybridization rate of 5%. The strongest 
effect is associated to the proportion of individuals used as reference (an increase in the proportion of individuals used as reference leads to a 
decrease in the difference between the estimates).
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all loci to be unlinked. The use of linked markers could also improve 
the identification of older admixture between populations (Falush 
et al., 2003; Lecis et al., 2006) because introgression can differently 
affect regions of the genome (for example, see Anderson et al., 
2009), but may be less suitable to study ongoing hybridization and 
introgression.

Our study highlights the importance of carrying out simulations 
in each study case to assess the reliability of estimates. The level of 
introgression can be assessed combining different approaches and 
simulations trying to properly reflect the functioning of the study 
system (McFarlane & Pemberton,  2019) should be carried out to 
test the power of the analysis, determine accuracy and assess possi-
ble biases (for example, see Oliveira et al., 2008; Randi et al., 2014; 
Sanchez-Donoso et al., 2014 Sanz et al., 2009).

The estimates by STRUCTURE show a remarkable increase in 
accuracy when many nonadmixed reference individuals are included 
in the analysis (Figure 6). Therefore, we stress the importance of in-
cluding samples from reference nonadmixed populations (for ex-
ample, museum specimens dating from before an admixture event; 
see also Sanchez-Donoso et  al.,  2014) to increase the reliability of 
STRUCTURE analyses. The availability of these samples can be lim-
ited, and historical DNA extraction and amplification can be costly and 
effort-demanding, but the accuracy in the analysis improves notably, 
increasing the reliability of the results. When only a limited number 
of reference samples is available, it could be useful to carry on multi-
ple STRUCTURE analyses including only a small proportion of those 
samples whose ancestry is unknown (Figure 7), using USEPOPINFO to 

define the reference samples and comparing the results obtained with 
different test sample sets. Also, the use of the option POPALPHAS can 
improve the analyses when source populations are unequally repre-
sented and if there is unbalanced sampling (see Wang, 2017). The use 
of a small number of markers is also known to influence the results of 
STRUCTURE (Toyama et al., 2020). Nevertheless, Lawson et al. (2018) 
have shown that different demographic histories can lead to identical 
results suggesting admixture in STRUCTURE and emphasize the im-
portance of combining analytical approaches to obtain a more robust 
analysis of recent demographic history. Our comparison of the results 
provided by different programs showed that not all of them suffer the 
same biases or to the same degree. Consequently, we strongly sug-
gest to combine STRUCTURE with other approaches and simulations, 
and evaluate the consistency in the results, especially when it is not 
possible to include suitable reference samples in the analyses. This is 
especially important, for example, in the cases where hybridization 
and introgression can be relevant in the design of management and 
conservation plans.

In ecology, conservation and evolutionary biology, it is import-
ant to efficiently identify hybrids and admixed individuals, as well as 
to determine gene flow among different populations. STRUCTURE 
analyses showed a tendency to classify admixed individuals as non-
admixed when reference samples were not included. The misidenti-
fication of the degree of introgression can impact our understanding 
about the evolutionary history of species or the risks of genetic 
homogenization and extinction, and therefore its implications for 
management and conservation plans should be carefully considered.

F I G U R E  6   Comparison of qSTRUCTURE 
and qreal when 30% of the individuals from 
the target population are sampled from 
the ancestral population and are used as 
reference. Individuals used as reference 
and those belonging to population B were 
excluded from the plots. Simulations 
were carried out with FST = 0.1 and 30 
loci, varying the number of alleles per 
marker and the hybridization rate. The 
accuracy of qSTRUCTURE estimates improved 
notably with the inclusion of reference 
individuals (compare to Figure 2b) 
and when activating the POPALPHAS 
option, especially for the cases with 
higher hybridization rate, where no pure 
individuals remained in the admixed 
population [Colour figure can be viewed 
at wileyonlinelibrary.com]
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