
 

Supplemental Information for:

Pleistocene climate fluctuations drove demographic history of African golden wolves
(Canis lupaster)

Carlos Sarabia1†, Juan C. Larrasoaña2, Vicente Uríos3, Bridgett vonHoldt4, Jennifer A. Leonard1†

1 Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC)

2 Instituto Geológico y Minero de España (IGME)

3 Vertebrate Zoology Research Group, University of Alicante

4 Faculty of Ecology and Evolutionary Biology, University of Princeton 

† Corresponding authors: Carlos Sarabia (cdomsar@gmail.com); Jennifer A. Leonard 

(jleonard@ebd.csic.es)

1



Table of Contents:
Supplementary Methods

 Materials and methods
 Pre-processing pipeline
 Variant calling and quality filters
 Genetic structure
 Demographic history
 Summary statistics
 Heterozygosity
 Divergence dating
 Replicability of results in divergence time estimation

Page 4
Page 4
Page 4
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10

Replicability tests: Results Page 12
Challenges and opportunities of working with low coverage genomes Page 13

Supplementary Bibliography Page 14

Supplementary Figures
 Supplementary Figure 1.  PSMC plots of African golden wolf (AGW) genomes under

different conditions. 
 Supplementary  Figure  2. Genotype  likelihood-based Principal  Component  Analysis

(PCA)
 Supplementary Figure 3. SNP-based Principal Component Analysis (PCA) of 23 canid

individuals.
 Supplementary  Figure  4.  Best-fit  calculation  of  K  (likelihood)  vs  values  of  K  as

calculated by NGSadmix
 Supplementary Figure 5.  SNP-based Admixture plots  of  Old World canids  mapped

against African hunting dog 
 Supplementary Figure 6. Thetas per site and neutrality tests of four populations
 Supplementary Figure 7. Genome wide heterozygosity calculated per individual and

population.
 Supplementary Figure 8.  Heterozygosity plots of east and west Moroccan individuals

per chromosome
 Supplementary Figure 9. Log-likelihood of divergence between members of the north

African golden wolf cluster (A) and north vs. east African golden wolf cluster (B) vs
time.

Page 18
Page 18

Page 19

Page 20

Page 21

Page 22

Page 23
Page 24

Page 25

Page 28

Supplementary Tables
 Table S1. List of animals included in this study with origin, reference from the 

literature, mean autosomal coverage and cluster from PCA and admixture plots. 

Additional 
file
Sheet 1
Sheet 2

2



 Table S2. Total reads, mappability, percentage of PCR duplicates and coverage of 26 
canid genomes mapped against CanFam3.1

 Table S3. Total reads, mappability, percentage of PCR duplicates and coverage of 23 
canid genomes mapped against African hunting dog

 Table S4. Comparison of % reads mapped, %PCR duplicates and coverages between 
genomes mapped against CanFam3.1 and African hunting dog reference genomes.

 Table S5. Standard deviations of genome wide Fst values within populations of African
golden wolves, gray wolves and coyotes.

 Table S6. Genome wide inbreeding coefficient (Fi) vs different coverages of 
downsampled sets of genomes. 

 Table S7. Table of splitting events between the Algerian and Kenyan (various 
coverages) lineages. 

 Table S8. Divergence time estimations between two runs of MiSTI: using even and 
uneven time segments

 Table S9. Divergence time estimations with the Cavalli-Sforza (1969) equation. 
 Table S10. Table of splitting events, polynomial equations of adjusted graphs to the 

data points, R2 and curve maximum calculated with the Newton-Raphson approach. 
 Table S11. Migration rates vs time segments per pair of lineages as calculated in 

MiSTI.

Sheet 3

Sheet 4

Sheet 5

Sheet 6

Sheet 7

Sheet 8

Sheet 9
Sheet 10

Supplementary Code
 00.cutadapt.sh: Adapter trimming for raw data genomes
 00.reference.genomes.index.sh: Indexing our reference genomes
 01.preprocessing.autoXMTY.sh: Pre-processing pipeline for wild canids genome 

mapping
 02.a.ANGSD.distribution.qscores.sh: Generating a distribution of quality scores
 02.b.ANGSD.genotype.likelihoods.sh: Estimating genotype likelihoods with ANGSD
 02.c.ANGSD.PCA.sh: PCA using genotype likelihoods with ANGSD and ngsTools
 02.d.ANGSD.ngsAdmix.sh: Admixture proportions using ANGSD and ngsAdmix
 02.e.ANGSD.plink.merge.sh: SNP merging and filtering
 02.f.ANGSD.plink.flashPCA.sh: SNP-based PCA
 02.g.ANGSD.plink.Admixture.sh: SNP-based Admixture
 03.SFS.Het.Fst.thetas.sh: SFS calculation, heterozygosity, genomewide Fst and thetas
 04.PSMC.sh: Pairwise Sequentially Markovian Coalescent (PSMC) 
 05.ngsPSMC.sh: Genotype likelihood-based PSMC (ngsPSMC)
 06.ROHs.Fi.sh: Runs of Homozygosity (ROHs) and Inbreeding coefficient (Fi)
 07.a.MiSTI.sh: Estimating divergence with PSMC-based Migration and Split Time 

3



Inference (MiSTI)
 07.b.MiSTI.replicability.cov.sh: Replicability test: a. High and low genomic coverages
 07.c.MiSTI.replicability.times.sh: Replicability test: b. Definition of time segments
 07.d.MiSTI.replicability.Cavalli.sh: Replicability test: c. Cavalli-Sforza (1969) equation

Supplementary Methods

Materials and methods

An African golden wolf roadkill from a previous study (Urios, Donat-Torres, Monroy-Vilchis, &
Idrissi, 2015) from which the mitochondrial genome has been already published (KT378605) was found
in 32º 33’ 21.8’’ N, 5º 50’ 50.9’’ W at the Issoulrhene area, 12 km southeast of Zaouiat Cheikh, in the
Moroccan Atlas  mountains.  The location is  hill  slope at  about  2000 meters  of  altitude,  with  dense
patches of olive trees and sparse shrub vegetation around the valley.  The sample was extracted from a
roadkill and immediately put in 96% ethanol, and conserved at -20ºC until DNA extraction. Protocols for
DNA  extraction  and  library  preparation  followed  Camacho-Sanchez  et  al.  (2018).  The  library  was
sequenced on an Illumina NovaSeq at Johns Hopkins Genetic Resources Core Facility.  The sample is
referred to as “west Morocco” in this  study to differentiate it  from a previously published genome
(Gopalakrishnan et al., 2018) from another Moroccan individual (referred to here as “east Morocco”).
An additional 26 genomes were obtained from the literature: six African golden wolves (Kenya, Ethiopia,
Egyptian Sinai, Senegal, east Morocco and Algeria), seven domestic dogs (two Nigerian village dogs, two
African breeds -Saluki  and Basenji-,  and three Eurasian dogs  from China,  Qatar  and India),  six  gray
wolves (Saudi Arabia, China, Canada, Iran, Spain, Syria), two Eurasian golden jackals (Syria and Israel)
one  Ethiopian  wolf,  one  African  hunting  dog  (south  Africa)  and  three  coyotes  (California,  Illinois-
Midwest, Mexico) (Table S1). 

Pre-processing pipeline

We used cutadapt (Martin, 2011) to trim adapters and low quality base pairs (-q 20 option) in all
raw reads files (.fastq) . Quality of the reads was evaluated visually with FastQC (Andrews, 2010). Reads
were mapped using bwa mem v1.3 (Li  & Durbin, 2010) to the reference genome of  Canis familiaris
(domestic dog) CanFam3.1 (Lindblad-Toh et al., 2005), with an assembled Y-chr (kindly provided by Dr.
Krishna Veeramah). With the aim to compare admixture plots and Principal Component Analyses (PCA)
and discard possible ascertainment biases introduced by the dog reference, reads were also mapped to
an assembled reference genome of Lycaon pictus (African hunting dog) (Campana et al., 2016). We used
samtools  v1.9  (Li,  2011) to  sort  .bam  files  and  to  eliminate  singletons  and  sequences  with
complementary reads in other chromosomes or with very low mapping quality (MAPQ<5). Duplicates
and  realigned  reads  around  indels  were  removed  simultaneously  in  all  genomes  using  GATK  v3.7
(McKenna et al., 2010) and the output .bam files were checked for mean read depth per chromosome.
All  reads  had  a  sequencing  quality  higher  than  20  and  had  a  complementary  read  in  the  same
chromosome. 
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Variant calling and quality filters

Reads  mapped  to  autosomes  in  bam  format  were  separated  from  reads  mapping  to  sex
chromosomes and mitochondrial DNA and were used for subsequent analyses. Before calling genotype
likelihoods, reads of low quality and multiple hits were filtered out to print a distribution of quality
scores using ANGSD (Korneliussen, Albrechtsen, & Nielsen, 2014) following Matteo Fumagalli’s tutorial
for ngsTools (Fumagalli,  n.d.). We computed base quality alignment using option -baq (Li,  2011) and
filtered  reads  with  low  mapping  quality  (-minMapQ  20).  We  then  called  genotype  likelihoods  in
autosomes using ANGSD filtering out sites with depth <5X, reads with mapping quality less than 20,
sites represented more than twice the mean coverage depth as in Freedman et al., (2014)  and non-
uniquely mapped reads. Since some of the genomes in our dataset had a mean low genome depth
(around 5X), we used genotype likelihood frequencies to account for uncertainty in inferred genotypes
in  downstream  analyses  and  called  SNPs  using  the  -doplink  option  in  ANGSD.  We  downloaded
the .refseq annotation file of CanFam3 from the UCSC Genome browser (Kent et al., 2002) and using in-
home scripts,  defined an exclusion zone of  10kb upstream and downstream the genes in  order  to
exclude selective sweeps and select for neutral markers (Freedman et al., 2014).

Genetic structure

In order to study population genetic structure, genotype posterior probabilities of genotypes of
the five Old World species (African golden wolves, dogs, gray wolves, Ethiopian wolf and Eurasian golden
jackals) were generated with ANGSD (-dogeno 32 option) from genomes both mapped to the CanFam3.1
and  African  hunting  dog  reference  genomes.  The  ANGSD  output  was  used  to  perform  a  Principal
Component  Analysis  (PCA)  using  the  ngsCovar  package  in  ngsTools  (Fumagalli,  Vieira,  Linderoth,  &
Nielsen, 2014) and Rscript v3.4.4 (The R Core Team, 2017). We also estimated admixture proportions
from genotype likelihoods from genomes mapped to both reference genomes using NGSadmix (Skotte &
Albrechtsen, 2013), setting number of clusters (K) between 5 and 14. In order to estimate the best-fit K,
NGSadmix was run until K=25. Further attempts to run the program with higher K values failed in our
server. To avoid biases in local minima for K generated by NGSadmix, we ran the software five times,
obtaining the same plot (data not shown).

Since we wanted to minimize ascertainment bias due to sites under linkage disequilibrium, we
also used .glf.gz files from genomes mapped to both reference genomes to run ANGSD with the -doPlink
option to call a number of SNPs based on the genotype likelihoods with a p-value=0.00001, using fixed
frequencies (-doMaf 1) and using frequencies as prior (-doPost 1). These SNPs were filtered for genic
regions (Freedman et al., 2014) and filtered for deviations from Hardy-Weinberg (HW) equilibrium (--
hwe 0.001), minimum allele frequencies (--maf 0.05) and linkage disequilibrium (--indep-pairwise 50 5
0.5) using PLINK v1.9 (Purcell et al., 2007). With this curated set of unlinked SNPs in HW equilibrium, we
performed a PCA using flashPCA (Abraham & Inouye, 2014) and estimated admixture composition using
ADMIXTURE (Alexander, Novembre, & Lange, 2009) with a number of clusters (K) between 5 and 14.
Visual comparisons were made for plots with genotype likelihoods and with SNP calling and for those
reads mapped against CanFam3.1 and the Lycaon pictus genome. All PCA and admixture tests (both run
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by  NGSadmix  and  Admixture)  were  estimated  excluding  genic  regions  with  10  kb  upstream  and
downstream. 

Demographic history

We estimated a consensus sequence of our mapped .bam files using bcftools v1.9 (Li  et al.,
2009) without excluding genic regions.  Calling a consensus sequence from low coverage samples (e.g.,
7X-15X)  can  be  misleading  since  the  SNP  calling  process  can  misinterpret  a  heterozygous  sites  as
homozygous and thus mask the real genomewide heterozygosity and dramatically modify estimations of
demographic history (Nadachowska-Brzyska, Burri, Smeds, & Ellegren, 2016). To avoid this, we repeated
the process with the actual coverage and downsampled .bam files of the Kenyan African golden wolf
(7X, 9X, 11.12X, 15X and 24X) to visually estimate the best False Negative Rate (FNR) as suggested (Li &
Durbin, 2011) and previously done in other studies (Hawkins et al., 2018; Kim et al., 2014) . Plots of the
Kenyan African golden wolf genome at these different mean genomewide coverages were corrected
visually after a round of iterations with the psmc_plot.pl program in the PSMC package up to the third
decimal of FNR and plotted together with and without the FNR correction (Fig. S1A,B). After determining
the  FNR  per  individual,  we  called  consensus  sequences  applying  the  recommended  coefficient  to
downgrade  mapping  duality  for  reads  with  excessive  mismatches  in  bcftools  mpileup  (-C  50)  and
minimum and maximum coverage thresholds of 5 and 100, respectively (-d 5, -D 100) to generate .fq.gz
files. PSMC was called using 64 atomic time intervals divided in a parameter of 6 and 58 parameters of
one atomic interval each (-p "1*6+58*1") as specified in previous studies with African golden wolves
(Freedman et al.,  2014),  and a correction for initial  theta per individual  and coverage following the
README file of PSMC (Li & Durbin, 2011). PSMC files were generated by correcting initial theta using the
-r option as suggested at the README file of PSMC (Li & Durbin, 2011). Since the option -r determines
the theta_0/rho ratio and has a default value of 5, we estimated each original theta with the provided
equation:

theta_FNR = theta_0/(1-FNR), 

where theta_0=5 and FNR was calculated visually per each genome according to their coverage.
FNR per each coverage (7X, 9X, 11.2X and 15X) was 0.35, 0.21, 0.18 and 0.11, respectively. Therefore, -r
option was set as 7.6923, 6.3291, 6.0975 and 5.6179, respectively. We generated the .psmc file from the
normal coverage (24X) with default parameters for -r. An example command would be:

$psmc -N20 -t10 -r6.3291 -b -p "1*6+58*1" -o Kenya.11.2X.psmc Kenya.11.2X.psmcfa

A round of 50 iterations of bootstrapping per genome was applied and all genome plots were
overlaid to draw a multisample PSMC plot. Mutation rate was defined as 4.5 *10 -9  (Skoglund et al., 2015;
Koch  et  al.,  2019) and  generation  time  as  3  years  (Chavez  et  al.,  2019;  Freedman  et  al.,  2014;
Gopalakrishnan et al., 2018; Koepfli et al., 2015; Y. H. Liu et al., 2018) . We took into consideration both
ends of the mutation rate estimation by Koch et al.  (2019) (2.7-7.1*10 -9),  and plotted them without
bootstrapping (Fig. S1C,D). 
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We  explored  a  recently  developed  program  to  infer  demographic  population  history  in
individual genomes with low coverage, ngsPSMC (Shchur, Korneliussen, & Nielsen, 2017). We generated
files in ANGSD as input for ngsPSMC with the option -dopsmc and filtering for a minimum depth of 5X
per genome. In ngsPSMC we used the same design for defining atomic time intervals as in PSMC and ran
ngsPSMC using 50 iterations and initial popsizes per individual at 105 years ago as observed at the PSMC
plot. We used the calculated genomewide nucleotide diversity per individual as theta (θ) (see “Methods:
Summary  Statistics”)  and  calculated  genomewide  rho  from  a  recombination  map  for  dogs  from  a
previous  study  (Auton  et  al.,  2013).  Mutation rate  and  generation time were  defined as  in  PSMC.
NgsPSMC is still under development, so bootstrapped plots could not be provided. 

There is a robust collection of proxies to understand past climatic variability over the Sahara. We
have  considered  both  low-  and  high-latitude  climate  mechanisms  influencing  past  environmental
variability  in  the  Sahara  back  to  1.5  million  years  ago  (Drake,  Breeze,  &  Parker,  2013;  Ehrmann,
Schmiedl, Beuscher, & Krüger, 2017; Larrasoaña, Roberts, & Rohling, 2013; McClymont, Sosdian, Rosell-
Melé, & Rosenthal, 2013; Rohling, Mayewski, & Challenor, 2003; Smith, 2012) that could have affected
the  demographic  history  of  African  golden  wolves  in  our  PSMC  and  ngsPSMC  plots,  and  also  the
speciation event that led to African golden wolves as previously proposed (Chavez et al., 2019; Koepfli et
al., 2015) with a confidence interval of 400kyr. . We compared the timing of these events with the PSMC
and ngsPSMC maxima and minima and observed any possible correlations between climatic events and
increases or decreases of population.

Summary statistics

Our sample sizes (north African golden wolves (AGW) – 5 individuals, east AGW – 2 individuals)
were too small for detection of more recent changes in population sizes using IBD-based methods such
as SNeP (Barbato, Orozco-terWengel, Tapio, & Bruford, 2015) and IBDNe (Browning & Browning, 2015),
so we needed an indirect approach to estimate recent changes in Ne. We inferred changes in Ne of non-
genic regions with a series of thetas neutrality tests provided by the ANGSD package

Since most of our samples had a low coverage, we aimed to estimate or thetas and Fst taking
genotype  uncertainty  into  account.  We  relied  on  a  likelihood-based  estimation  of  site  frequency
spectrum  (SFS)  using  ANGSD  (Nielsen,  Korneliussen,  Albrechtsen,  Li,  &  Wang,  2012). Briefly,  a  SFS
calculation is an estimation of the proportion of sites at different allele frequencies and ANGSD is able to
do so by computing genotype likelihoods first  and calculate posterior  probabilities of  Sample Allele
Frequency (SAF) for each site (Fumagalli, 2017). Previous studies have suggested that African hunting
dogs have been evolving as an independent lineage from other canids since at least 1.7 Myr ago, with no
detected recent admixture (Chavez et al., 2019), so we decided to use that reference genome (Campana
et  al.,  2016)  as  ancestral  to  call  unfolded SFS.  SAF files  were generated from .bam alignment  files
assuming HW equilibrium and using a multisample GL estimation option (-dosaf 1), with an upper depth
filter of 2.5 times the mean read depth per sample. We also estimated SAF files per population as
defined  in  Table  S1.  Using  the  realSFS  program  from  the  ANGSD  package  (Korneliussen,  Moltke,
Albrechtsen,  &  Nielsen,  2013;  Nielsen  et  al.,  2012),  we  generated  SFS  files  from the  SAF  files  and
calculated their genomewide heterozygosity using the fraction of singletons from the whole SFS as in
Gopalakrishnan et  al.,  (2018). Although a measure of  SFS is  robust  for  low coverage samples (Han,
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Sinsheimer, & Novembre, 2015), we wanted to study if lower coverages for some of our samples could
decrease the measure of heterozygosity. We down sampled the Kenyan African golden wolf genome
(24X) to mean depths of 7X, 9X, 11.2X and 15X using samtools view -bs (Li, 2011)  and repeated the steps
for SFS calling. We plotted mean genome wide observed and corrected heterozygosity for all samples. 

In  order  to  estimate mean Fst  among individuals,  a  joint  SFS  between pairs  of  populations
(2DSFS) was calculated. Using a 50kb sliding windows scan with realSFS (Fumagalli  et al.,  2014) , we
estimated  region-based  Fst  values  and  calculated  genome  wide  average  Fst  and  95%  confidence
intervals  with custom scripts  in bash.  Finally,  we computed a series  of  nucleotide diversity  indexes
(Tajima’s D (Tajima, 1989), Fu and Li’s F and D (Fu & Li, 1993), Fay’s H (Zeng, Fu, Shi, & Wu, 2006), Zeng’s
E (Zeng et al., 2006)) and thetas (ӨW, Өπ, ӨFL, ӨH, ӨL) (Durrett, 2008; Fay & Wu, 2000; Fu & Li, 1993;
Tajima,  1989;  Watterson,  1975;  Zeng  et  al.,  2006) using  the  -doThetas  1  option  in  ANGSD  with
population-based SFS as prior information (-pest),  divided in 50-kb windows across the genome and
excluding genic regions to avoid biases over genes under selection.

While Tajima’s D and Fu and Li’s D estimate ratios of rare variants as compared to common
ones, Fay and Wu’s H take into consideration the abundance of very high-frequency variants relative to
intermediate-frequency variants. Zeng’s E estimates the abundance of high-frequency variants relative
to low-frequency variants. Fay and Wu’s H and Zeng’s E are the estimators with the highest sensitivity to
changes in high-frequency variants as compared to the other estimators (Zeng et al., 2006). Zeng’s E is
the most sensitive test to population growth, since high-frequency variants reach equilibrium later than
rare variants (Zeng et al., 2006). 

Heterozygosity

We evaluated heterozygosity in our samples at a genome wide level through the estimation of
genome wide inbreeding coefficient and runs of homozygosity (ROHs), comparing within populations of
African golden wolves (north and east) and with other canids (coyotes, and middle eastern gray wolves).
We  defined  four  populations:  afr_north  (AGW  from  Algeria,  Egypt,  east  Morocco,  west  Morocco,
Senegal), afr_east (AGW from Ethiopia, Kenya), coyote (coyotes from California, Midwest and Mexico)
and gwolf_me (gray wolves from S. Arabia, Iran and Syria). We used ngsF (Vieira, Fumagalli, Albrechtsen,
& Nielsen, 2013) to calculate the inbreeding coefficient or Fi per individual. ngsF is part of the ngsTools
package (Fumagalli  et  al.,  2014) which works well  with low coverage data.  We estimated genotype
likelihoods per individual (-doglf 3) with a p-value threshold of 0.001 in ANGSD. Then, we extracted the
number of sites from the .mafs.gz file and computed 20 iterations in ngsF to find the best starting point
to calculate Fi. Fi per individual was calculated in PLINK with --het. This method uses a number of called
SNPs based on genotype likelihoods using the -doplink option in ANGSD that served as dataset for the
SNP-based PCA and admixture plots from previous section (see “Methods: Variant calling and quality
filters”).  While PLINK needs genotypes to be called by ANGSD or other softwares, ngsF uses genotype
likelihoods and is able to downstream the uncertainty of called genotypes if our samples have a low
coverage. This approach could be more reliable for samples below 15X (Nadachowska-Brzyska et al.,
2013). 
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In order to calculate ROHs across the whole genome we used two different approaches. The first
method uses PLINK and makes use of the SNP dataset from the F i calculation. In each population we
removed SNPs in close linkage disequilibrium in 200-basepairs (bp) windows with a step size of 100 bp
and a R2 of 0.9 using option –indep-pairwise 200 100 0.90 in PLINK and generated ROHs as in Sams &
Boyko, (2019). The second method uses the software ROHan (Renaud, Hanghøj, Korneliussen, Willerslev,
& Orlando, 2019), which is especially adapted to work with low coverage genomes and uses Bayesian
statistics to estimate local rates of heterozygosity, infers ROHs and computes local heterozygosity values
inside and outside of ROHs. We ran ROHan in windows of 500kb, using the .bam mapped and filtered
files from all African golden wolves, coyotes and gray wolves of the Middle East. Expected theta in ROHs
was set to 2*10-5 and we used the default error rate of Illumina platforms as provided by the program.
Plots of local heterozygosity were computed across the whole genome and a summary of ROHs was
calculated. Finally, we calculated inbreeding coefficients from ROHs (FROH) as in (McQuillan et al., 2008;
Sams & Boyko, 2019):

F ROH j
=

∑
k

lengt h (ROH k )

L
;

where ROHk is the kth ROH in individual j’s genome and L is the total length of the genome. 

Divergence dating

The Sahara region has been subjected to cycles of desertification and regreening for the last 8
million years (Drake et al., 2013; Ehrmann et al., 2017; Larrasoaña et al., 2013; Smith, 2012) . We used
MiSTI (Shchur, 2019) to estimate times of divergence between local lineages represented by our seven
individuals. We used a table of green Sahara periods (GSPs) in the last million years from Larrasoaña et
al., (2013) to define time segments of potential connectivity among lineages. A list of cooler stadials
associated with increased aridity of the Sahara region was considered as potential times for divergence
(Ehrmann et al., 2017; Heinrich, 1988; Rohling et al., 2003). A pairwise time scale was generated using
PSMC  and  2DSFS  files  from  previous  sections.  GNU  Parallel  (Tange,  2018) was  used  to  model
simultaneously different scenarios of divergence among lineages with different migration rates in dry
periods and GSPs, using an automatized optimization round for migration rate per time per segment.
We extracted a table of splitting times from MiSTI and plotted log likelihoods per proposed splitting time
against time. Finally, a polynomial curve was fitted per group of data where R2  ≥ 0.99 to estimate the
maximum point of  the curve using the Newton-Raphson approach and a confidence interval  of  the
upper 5%, 1% and 0.1% of log likelihood points. 
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Replicability of results in divergence time estimation

We  have  estimated  divergence  times  within  seven  AGW  lineages  using  a  site  frequency
spectrum-based novel software, MiSTI (Shchur, 2019). Since this study represents, to our knowledge,
the first publication where this software has been used, we wanted to ensure the replicability of our
results by testing the program. We attempted to observe if there was a difference in divergence times
estimations  by  changing  the  coverage  of  one  of  the  genomes  involved  and  the  definition  of  time
segments where MiSTI automatically estimates migration rates. We also wanted to compare results with
estimations of time divergences using the Cavalli-Sforza (1969) equation. 

a.  High  and  low  genomic  coverages.  To  compare  divergence  times  of  two  genomes  with
different coverages, we first used the .psmc files of the Kenyan genome at the original coverage (24X)
and four downsampled coverages (7X, 9X, 11.2X and 15X, equivalent to the coverages of AGW from
Senegal, Algeria, west Morocco and Egypt – East Morocco, respectively) from the “Demographic history”
section (see above). Previous to generate the .psmc files, we accounted for the theta_0 correction as in
section “Demographic history”

We estimated the unfolded SFS of each downsampled and normal coverage Kenyan .bam file
(7X, 9X, 11.2X, 15X, 24X) using ANGSD, and used the .saf files to calculate the joint SFS (2DSFS) using
realSFS as in section “Summary Statistics” (see above) separatedly between the Algerian genome and
each coverage of the Kenyan genome. Following MiSTI’s instructions (Shchur, 2019), we estimated joint
site-frequency  spectrum  in  MiSTI  format  for  each  Algerian-Kenyan  combination  using  the  script
ANGSDSFS.py. Also, time scale files were calculated using calc_time,py of the MiSTI package joining time
scales from both .psmc files in each case. Although some time steps were different, we gathered the
ones that coincided between the five time scale files to run the program several times. An example of
this can be see below:

time step algeria.kenya.7X algeria.kenya.9X algeria.kenya.11.2X algeria.kenya.15X algeria.kenya.24X

0 0 0 0 0 0

1  1237 1487 1551 1776 1919

2  2205 2205 2205 2205 2205

3  2579 3100 3234 3703 4003

4  4037 4585 4585 4585 4585

5  4585 4852 5060 5793 6263

6  5618 6752 7042 7154 7154

7  7154 7154 7154 8060 8715

8  7334 8814 9192 9928 9928

9  9197 9928 9928 10519 11375

10  9928 11052 11525 12921 12921
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In this table we see how several time steps coincide (0, 2205, 4585, 7154, 9928), which are the 
time steps extracted from the Algerian .psmc file. 

We used these time steps to run MiSTI in parallel to optimize migration rates and possible time 
of divergences across the five combinations: algeria.kenya.7X, algeria.kenya.9X, algeria.kenya.11.2X, 
algeria.kenya.15X, algeria.kenya.24X. Loss of heterozygosity was calculated per coverage as in section 
“Heterozygosity” (see above). An example script is below:

time parallel --header : -j 20 $misti -uf --bsSize 10 --hetloss 0.21472 0.23025 --funits $MiSTI/setunits.canid.txt 
$in/psmc/afr_wolf.algeria.psmc $in/psmc/afr_wolf.kenya.7X.psmc $in/misfs/algeria.kenya.7X.mi.sfs {per} -o 
$in/mi/algeria.kenya.7X.opt.mi -mi 1 0 4 00.0 1 -mi 2 0 4 00.0 1 -mi 1 5 11 00.0 1 -mi 2 5 11 00.0 1 -mi 1 12 40 00.0 1 -mi 2 12 40
00.0 1 -mi 1 41 42 00.0 1 -mi 2 41 42 00.0 1 -mi 1 43 44 00.0 1 -mi 2 43 44 00.0 1 -mi 1 45 46 00.0 1 -mi 2 45 46 00.0 1 -mi 1 47 
48 00.0 1 -mi 2 47 48 00.0 1 -mi 1 49 50 00.0 1 -mi 2 49 50 00.0 1 -mi 1 51 55 00.0 1 -mi 2 51 53 00.0 1 ::: per 17 18 19 20 21 22 
23 24 25 26 27 28 >> $output/algeria.kenya.7X.out

Split times and log likelihoods were extracted from each output file, plotted against each other 
in Excel and a polynomial curve was fitted per group of data with R2>0.99 as in section “Divergence 
dating”. Results are presented in Table S7.

b. Definition of time segments.  In this section we define time segments as those segments
between time steps generated using calc_time,py of the MiSTI package as in “High and low genome
coverages” (see above). These time segments define either “humid” or “dry” conditions in Sahara. For
example, using the time scale file from Algeria – Kenya (7X) above, two time segments could be 0-4 (0-
4037 yr ago) and 5-11 (4585-11218 yr ago). The software architecture of MiSTI does not allow to repeat
a time step (0,1,2,3,4…) from one time segment to another and the computation time to explore each
one of the time segments possible is too much to explore all 21 divergence times at the same time.
Since inputting manually these time segments could introduce a bias, we ran MiSTI twice in the same
pair of genomes using paired time segments: 0-1; 2-3; 4-5… and 0-2; 3-4; 5-6… . Times and log-likelihood
values were extracted from the MiSTI output files, plotted against each other and a polynomial curve
was fitted per group of data as in section “Divergence dating”. Results are presented in Table S8.

C.  Comparison  to  Cavalli-Sforza  estimation. We  compared  our  results  of  MiSTI  with  an
estimation of divergence times following the Cavalli-Sforza (1969) equation:

T = - log (1-ḞST) (1), 

Where ḞST is an estimate of FST and T is scaled time, which is a measure of divergence and can be
related to number of generations/years:

T = t/2N (2), where t is number of generations/years since divergence and N is the population
effective size of the two populations.

Finally,  we  can  relate  the  mean  genomewide  estimations  of  Watterson’s  theta  of  section
“Summary statistics” (see above) with a rough estimation of the population effective size:

θW= 4*Ne*μ          (3)

where θW is a measure of Watterson’s theta, Ne is the population effective size and μ is the 
mutation rate per site and generation. Combining equations (1), (2) and (3) we have:
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t = (- log (1-ḞST))*2*(θW/(4*μ))          (4)

t is a mathematical measure of divergence time between two populations that, although robust,
presents a great standard deviation (Nielsen et al., 1998). In our estimation we have firstly calculated 
genomewide ḞST and θW including genic regions between pairs of lineages (for example, Algeria – Kenya), 
but filtering out the sections of the curve with the lowest 5% number of sites per genomic window in R 
and retaining windows with a consistent number of sites. A range of values for the mutation rate per 
site and generation has been proposed in previous literature (Lindblad-Toh et al., 2005; Freedman et al., 
2014; Skoglund, Ersmark, Palkopoulou & Dalen, 2015; Frantz et al., 2016; Koch et al., 2019). We chose μ 
= 4.0-4.5*10-9 as these values were more consistently used in previous studies (Skoglund et al., 2015; 
Frantz et al., 2016; Koch et al., 2019). Although Koch et al. (2019) proposes a wider range of 2.7-7.1*10 -9 

mutations per site and generation, we have observed that values close to 4.0*10 -9 are more consistent 
with the estimated speciation time of African golden wolves (Koepfli et al., 2015, Chavez et al., 2019) 
(Figs. 3 and S1C,D). The results of the estimations for divergence times are presented in Table S9.

Replicability tests: results

a.  High  and low genomic  coverages. We have observed generally  consistent  estimations of
divergence times regardless of the coverage used, except for when one of the genomes was 9X and the
other 7X (Table S7), when the divergence time is shown to be slightly later. 

Such a situation is presented only in the Algeria (9X) – Senegal (7X) divergence, which is part of
the EMAS cluster (see Figures 2, S2,S3,S5, Table 1 and main text Results: “Divergence during glacial
periods”). In all three lineages from the EMAS cluster, divergence times (Algeria-Senegal, East Morocco-
Algeria and East Morocco-Senegal) are lower than the earlier time step and have possibly diverged less
than 2500-3000 yr  ago.  The estimation of  the Algeria-Senegal  divergence would not  necessarily  be
underestimated since both the Senegal (7X) – East Morocco (11.2X) and the East Morocco (11.2X) –
Algeria (9X) divergence times are close to 0, with no evidence of  underestimation. Furthermore, all
heterozygosity losses were accounted for in our scripts (see Supplementary Code Files 7a-d). For this
reason, we trust the MiSTI results even in the Algeria-Senegal divergence time estimation. 

b. Definition of time segments.  We have found exactly the same estimations of divergence
times regardless of  what time segments were predefined.  However,  slightly different estimations of
divergence times were found when using more or less time steps to draw the polynomial curve (see
Table S8). For this reason, we decided to include all time steps between 0 and 150kyr ago for all MiSTI
estimations of divergence times. Subsequently, we allowed MiSTI to automatically calculate migration
rates between pre-defined time segments.

c.  Comparison  to  Cavalli-Sforza  estimation.  We  found  a  rather  good  consistency  between
results by MiSTI and by the Cavalli-Sforza equation (1969) (Table S9). As previously reported, the Cavalli-
Sforza equation presents wide standard deviations (Nielsen et al.,  1998), even though we used only
significant 95% data under the curves of genome wide ḞST and θW.

However, the divergence time estimates with the Cavalli-Sforza (1969) equation did not coincide
with our MiSTI estimates for those divergences involving either the Ethiopian or West Moroccan AGW.

12



These  genomes  present  the  lowest  genome wide  heterozygosities  (see  Table  2).  The  Cavalli-Sforza
equation is  heavily  dependent  on  a  proper  estimation of  genome wide Fst  and  assumes that  with
divergence times are so small that mutation is not as important as genetic drift (Nielsen et al., 1998). If
the Ethiopian and west Moroccan lineages have been relatively isolated in mountainous ranges in small
population sizes for a long time (as suggested by our results, see Tables 1 and 2 and Fig.S8), we expect to
find a higher impact of genetic drift and therefore the Cavalli-Sforza estimate could be more affected
than the MiSTI estimates, which rely upon both PSMC and 2DSFS more robust estimations. 

Challenges and opportunities of working with low coverage genomes

In this study we are working with a number of medium and low coverage genomes (below 15X)
that have posed certain challenges for demographic  studies.  Genotype-based studies rely  upon SNP
calling techniques that are mostly inefficient when using coverages lower than 15X and PSMC plots
needed to be corrected according to false negative rates, which alter the shape and structure of the
demographic history curves (Hawkins et al., 2018; Kim et al., 2014). A number of IBD-based programs
(Barbato et al., 2015; Browning & Browning, 2015) that can detect more recent changes in population
size require both SNP calling and bigger datasets. Although SFS-based methods (Harris & Nielsen, 2013;
X. Liu & Fu, 2015) are mostly reliable if used in low coverage samples (Han et al., 2015) and has been
used  extensively  (Nielsen  et  al.,  2012),  we  observed  different  SFS-based  measures  of  genomewide
heterozygosity when downsampling a 24X genome to coverages of 7X, 9X, 11.2X and 15X. In line with
this result, we propose correcting genomewide heterozygosity whenever using low and high coverage
samples.

The most reliable method to study genotypes in medium and low coverage genomes is the
discovery  of  genotype likelihoods.  Softwares like ANGSD (Korneliussen et  al.,  2014) are able  to call
genotype likelihoods in a fairly big number of low coverage genomes and downstream the uncertainty
of called genotypes to further analyses. Packages like ngsTools (Fumagalli et al., 2014) and softwares of
recent development (ROHan (Renaud et al., 2019), ngsPSMC (Shchur et al., 2017), MiSTI (Shchur, 2019))
used  in  this  study  are  bound  to  empower  researchers  working  with  low  coverage  whole  genome
sequences and help in the development of conservation policies for elusive or cryptic species. These
techniques will be pivotal in studies where technical challenges to extract high coverage genomes or
funding capacities are a limiting factor. In summary, future projects working with African golden wolves
may benefit from the use of museum collections, low coverage genomes from opportunistic samples
and possibly genomic libraries from noninvasive samples (Hernandez-Rodriguez et al., 2018) to respond
evolutionary and ecological questions of one of the least studied canids in the world. 
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Supplementary Figure 1. PSMC plots of African golden wolf (AGW) genomes under different conditions. A, B represent PSMC plots of the Kenyan AGW 
with the normal (24X) and downsampled coverages (15X, 11.2X, 9X, 7X) without (A) and with (B) False Negative Rate correction for low heterozygosity 
due to low coverages. C, D represent PSMC plots of six AGW (Algeria, Ethiopia, Kenya, East Morocco, West Morocco, Senegal) with lower (C) and upper 
(D) bounds of the mutation rate estimation by Koch et al., (2019) (2.7-7.1*10 -9).
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Supplementary  Figure  2.  Genotype  likelihood-based  Principal  Component  Analysis  (PCA)  generated  by
ngsCovar from the ngsTools package. PCA was called using 2.54 million sites in 16 genomes of wild Old World
canids  (African golden wolves,  gray  wolves,  Ethiopian  wolves,  Eurasian golden jackals)  and  7  genomes of
domestic dogs.
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Supplementary Figure 3.  SNP-based Principal Component Analysis (PCA) of 23 canid individuals. SNPs were
called based in genotype likelihood using ANGSD with the -doPlink option, curated and filtered for Hardy-
Weinberg  equilibrium  and  linkage  disequilibrium  using  PLINK v1.9.  PCA  was  generated  by  flashPCA using
625,000 sites in 16 genomes of wild Old World canids (African golden wolves, gray wolves, Ethiopian wolves,
Eurasian golden jackals) and 7 genomes of domestic dogs. 
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Supplementary Figure 4. Best-fit calculation of K (likelihood) vs values of K as calculated by NGSadmix using 23 genomes of
Old World canids mapped against African hunting dog (admixture plot in Figure 2). 
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Supplementary Figure 5. SNP-based Admixture plots of Old World canids mapped against African hunting dog
showing  admixture  proportions,  including  the  23  individuals  used  at  this  study.  SNPs  were  called  as  in
Supplementary Figure 3.  Eastern (Kenya, Ethiopia) African golden wolves cluster in a different group from
those from the north (Egypt, Algeria, East Morocco, West Morocco, Senegal). EW: Ethiopian wolf. EGJ: Eurasian
golden jackal. This plot is based in 625,000 unlinked sites. 
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Supplementary Figure 6. Thetas per site and neutrality tests of four populations: east African Golden Wolves
(AGW) (Ethiopia, Kenya), northwest AGW (Algeria, east Morocco, west Morocco, Senegal), Coyote (California,
Midwest, Mexico),  Gray wolves of the Middle East (ME) (S.  Arabia, Iran, Syria).  We considered 50-kb non-
overlapping windows across the whole genome and filtered out those windows with a number of sites outside
the 99.7% of the distribution (mean +/- 3 standard deviations). Theta statistics were calculated dividing by the
total number of sites. Neutrality tests were averaged per window. 
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Supplementary  Figure  7.   Genome  wide  heterozygosity  calculated  per  individual  and  population.
Heterozygosity was calculated using the fraction of  singletons from the unfolded Site-Frequency Spectrum
(SFS). Genome wide heterozygosities were corrected using the Kenyan African golden wolf genome (24X) and
down sampling it to each coverage, calculating proportion of lost heterozygosity for each coverage. Corrections
are marked in darker colors. AGW: African golden wolves. GW: gray wolves. EGJ: Eurasian golden jackals.
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Supplementary Figure 8. Heterozygosity plots of east and west Moroccan individuals per chromosome. Plots were generated with ROHan using 500kB 
windows, minimum coverage of 5X and maximum coverage of 2.5 times the mean coverage per genome. --rohmu option were set as 2e-5. All other 
settings were left as default. 
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Supplementary Figure 9.  Log-likelihood of  divergence between members of  the north African golden wolf
cluster  (A)  and north vs.  east  African golden wolf  cluster  (B)  vs  time. Likelihood of  divergence times was
calculated paralellizing MiSTI with GNU Parallel  using the default optimization round.  Time segments were
defined using  likely  aridization  /  regreening  Sahara  periods  defined  in  the  literature.  A  polynomial  curve
equation was adjusted to the fifth degree and plotted when R2 > 0.99. 
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