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Confirmatory path analysis is a statistical technique to build models of causal hypotheses among variables and test if the data

conform with the causal model. However, classical path analysis techniques ignore the nonindependence of observations due

to phylogenetic relatedness among species, possibly leading to spurious results. Here, we present a simple method to perform

phylogenetic confirmatory path analysis (PPA). We analyzed simulated datasets with varying amounts of phylogenetic signal in

the data and a known underlying causal structure linking the traits to estimate Type I error and power. Results show that Type I

error for PPA appeared to be slightly anticonservative (range: 0.047–0.072) but path analysis models ignoring phylogenetic signal

resulted in much higher Type I error rates, which were positively related to the amount of phylogenetic signal (range: 0.051 for

λ = 0 to 0.916 for λ = 1). Further, the power of the test was not compromised when accounting for phylogeny. As an example

of the application of PPA, we revisit a study on the correlates of aggressive broodmate competition across seven avian families.

The use of PPA allowed us to gain greater insight into the plausible causal paths linking species traits to aggressive broodmate

competition.

KEY WORDS: Broodmate aggression, confirmatory path analysis, d-sep test, generalized least squares, phylogenetic comparative

analyses.

The phylogenetic comparative method has become a widely used

tool to address questions related to long-term evolutionary pro-

cesses by analyzing datasets collected across multiple species

and incorporating information about the varying degrees of relat-

edness among them (Felsenstein 1985; Harvey and Pagel 1991;

Freckleton et al. 2002). Such comparative analyses often include

numerous variables, which may be directly or indirectly related to

the trait of interest, yielding a complex, multivariate network of

3These authors contributed equally to this work.

associations, in which the distinct variables may present different

effect sizes. Evolutionary biologists employing the comparative

method have come to accept, with some resignation, that one in-

evitable consequence of the use of such methods is that they must

banish the idea of causality all together (although one particu-

lar method does allow to determine contingency, see Pagel and

Meade 2006). The results are generally interpreted as allowing—

at best—to identify a subset of variables that evolve in a correlated

fashion or that differences exist in the trait of interest between two

groups of species. Indeed, the fully randomized experiment is the
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ideal means by which to test hypotheses and explore causal rela-

tionships among variables (Fisher 1926). However, many evo-

lutionary questions regarding causality are simply impossible

to address using fully randomized experiments and alternative

methods have to be adopted (Felsenstein 1985; Harvey and Pagel

1991; Martins 2000; Freckleton et al. 2002).

One of these methods, confirmatory path analysis, has

been specifically developed to test prespecified causal hypothe-

ses represented as directed acyclic graphs (DAGs) and thus

as a set of structural equations (Shipley 2000b). Basically,

path analysis posits that correlational relationships between

characters imply an unresolved causal structure, because the

causal processes generating the observed data impose con-

straints on the patterns of correlation that such data display

(Shipley 2000a). Standard path analysis methods, such as those

implemented in structural equation models (SEM), therefore

compare the observed covariance matrix with the covariance

matrix predicted by the tested causal model. Alternatively,

the d-sep test, developed by Shipley (2000b), tests the condi-

tional probabilistic independences implied in the DAG of the

hypothesized causal model. As has been well discussed in the

literature, however, data points in multispecies analyses cannot

be considered as independent from a statistical point of view

because the differing degrees of shared ancestry among species

will influence the expected similarity in trait values (Felsenstein

1985; Harvey and Pagel 1991; Garland et al. 1992; Freckleton

et al. 2002). The consequences of not accounting for phylogenetic

effects in statistical analyses of multispecies data are, among oth-

ers, artificially inflated number of degrees of freedom, incorrectly

estimated variances, and increased Type I error rates of signif-

icance tests (Felsenstein 1985; Harvey and Pagel 1991; Martins

and Garland 1991; Martins et al. 2002; Rohlf 2006). All these

problems become compounded in path analysis because of the

requirement of testing multiple structural equations (in the case

of SEM) or all the conditional probabilistic independencies that

must be true for the causal model to be correct (in the case of the

d-sep test). Path analysis models addressing evolutionary ques-

tions using multispecies data, but which ignore the underlying

phylogenetic relationships among species, may therefore fail to

detect the “true” causal structure between the variables. Attempts

to use path analysis on multispecies datasets have been previously

reported in the literature. However, most of these analyses failed

to account explicitly for phylogeny (Sol et al. 2005, 2010) or did

not specify the method used to account for phylogeny. Recently

Santos and Cannatella (2011) used phylogenetic independent

contrasts (Felsenstein 1985; Garland et al. 1992) as the data

entered into SEM. This approach allowed the authors to undertake

the path analysis accounting for the statistical nonindependence

of the data arising from phylogenetic relatedness. However,

independent contrasts assume that the data being analyzed

evolves following a strict Brownian motion model of evolution

and performance can be compromised if the assumption is not

met (Revell 2010); furthermore, independent contrasts also

assume strictly linear relationships between trait values (Quader

et al. 2004). Here, we propose an alternative approach combining

path analysis with phylogenetic generalized least squares (PGLS)

methods (Martins and Hansen 1997). The advantage of PGLS

is that it can incorporate distinct models of trait evolution, can

combine continuous and categorical variables in a single model

without the need to code dummy variables, and provides the

value of the y-intercept (Martins and Hansen 1997). Further, a key

advantage of using PGLS is that it would allow for path analyses

to be undertaken using taxon-specific trait values rather than con-

trasts, facilitating interpretation of the results. Finally, in PGLS

an evolutionary parameter is estimated simultaneously with

model fit. The role of this parameter is to determine the amount

of phylogenetic signal in the data (in the residuals of the model to

be precise) and hence the necessary correction for the expected

covariance in trait values resulting from phylogenetic relatedness,

given the evolutionary model (Freckleton et al. 2002; Revell

2010). This is an important advantage because in some instances

data may present a phylogenetic structure that is intermediate

between that predicted by the evolutionary model and absence

of phylogenetic correlation in the data (Freckleton et al. 2002;

Revell 2010). Under such circumstances, PGLS models have

been shown to outperform independent contrasts (Revell 2010).

Our proposed method for phylogenetic confirmatory path

analysis (hereafter called PPA), integrates PGLS with the d-sep

test developed by Shipley (2000b). This method exploits the con-

cept of d-separation (Pearl 1988; Verma and Pearl 1988) to predict

the minimal set of conditional probabilistic independencies that

must all be true if the causal model is correct. The predicted

independencies can thus be tested using various statistical tests,

according to the nature of the data at hand, and the probabili-

ties of these tests can be combined using Fisher’s C test (Shipley

2000a), which reflects the deviation of the data from the correla-

tional structure predicted if the causal model is correct. The d-sep

test is a very general test that can be used for small sample sizes

(because the inferential tests are not asymptotic), nonnormally

distributed data (although the phylogenetic comparative methods

we will use here do assume normal distribution of the phylogenet-

ically transformed residuals), and nonlinear functional relation-

ships. The only disadvantage of d-sep tests is that they cannot be

used with causal models including latent (i.e., not measured) vari-

ables (Shipley 2000a,b). Shipley (2009) showed how confirmatory

path analysis by d-sep tests can be generalized to deal with data

having an underlying hierarchical or multilevel structure. Here,

we generalize the method further to deal with multispecies data,

which are not independent because of phylogenetic relationships

among species. We use simulations to explore the consequences of

EVOLUTION FEBRUARY 2013 3 7 9



A. VON HARDENBERG AND A. GONZALEZ-VOYER

ignoring phylogeny when undertaking confirmatory path analysis

by d-sep tests. Finally, we revisit a previously published analy-

sis of the evolutionary correlates of aggressive sibling strife in

birds (Gonzalez-Voyer et al. 2007) as an empirical example of the

implementation of the method.

Methods
INTEGRATING THE D-SEP TEST WITH PGLS

Shipley (2009) showed how the d-sep test can be combined with

generalized linear mixed models (GLMM) and provides detailed

instructions to do this within the open source statistical envi-

ronment R (R Development Core Team 2011) using the pack-

age “nlme” (Pinheiro et al. 2011). We bring this idea one step

further, showing that the same procedure as in Shipley (2009)

can be used to combine the d-sep test with PGLS and thus per-

form a PPA. Although the method was already described in detail

elsewhere, for didactic reasons, we present here the four steps

involved in the d-sep test for confirmatory path analysis, with

additional details about how to combine it with PGLS (for a

more detailed account on the procedure for nonphylogenetic path

analysis and on the statistical background, we refer readers to

Shipley 2000b, 2009). The first step in any path analysis (phy-

logenetic or not) is to describe the hypothesized causal relation-

ships among the measured variables using a DAG. Typically,

in a DAG, measured variables are represented as boxes (called

vertices in the jargon of graph theory) and causal links are rep-

resented as directed arrows (called edges) joining the vertices. A

vertex from which an edge originates is called a parent. Figure 1

shows an example of DAGs describing two alternative models

of possible cause-effect relationships among five variables. The

second step consists in using the concept of d-separation (Pearl

1988; Verma and Pearl 1988) to predict the minimal set of con-

ditional probabilistic independence constraints (called the basis

set), which must all be true for the causal model to be correct. In

practice, to obtain the basis set, one has to list all pairs of non-

adjacent variables, that is, those not directly joined by an edge.

X1 X2 X3 X4 X5

X1 X2 X3

X4 X5

A

B

Figure 1. Directed acyclic graphs describing two alternative mod-

els of possible cause-effect relationships among five variables.

Thus, for the model in Figure 1A the list would be [(X1, X3),

(X1, X4), (X1, X5), (X2, X4), (X2, X5), (X3, X5)]. Then one lists

the parent variables of either nonadjacent variables in the previ-

ous list, that is, [{X2},{X3},{X4},{X1,X3},{X1,X4},{X2,X4}].

Simply combining these two lists, one obtains the basis set of the

d-separation statement describing the probabilistic independence

between the two nonadjacent variables, conditioned on the parent

variables of both; that is, for the model in Figure 1A, the basis

set would be [(X1, X3){X2}, (X1, X4){X3}, (X1, X5){X4}, (X2,

X4){X1, X3}, (X2, X5){X1, X4}, (X3, X5){X2, X4}]. Following

the notation of Shipley (2004), (X1, X3){X2} indicates that X1 is

probabilistically independent from X3 conditional on the variable

X2 whereas (X2, X4){X1, X3} indicates that X2 is probabilisti-

cally independent from X4 conditional on the variables X1 and

X3. We leave it to the reader to derive the basis set for the model

in Figure 1B. The third step, in the context of this article, consists

in testing each conditional independence, derived from the d-sep

statements in the basis set, by linear models of the type (taking as

an example the first d-sep statement of the basis set listed above):

X3 = X2 + X1, to calculate the probability (pi) that the partial

regression coefficient associated with X1 is 0 (i.e., the effect of

X1 on X3 conditional on X2). In the case of data with an under-

lying phylogenetic structure, such linear models can be easily fit

using the PGLS approach implemented in R using the package

“nlme,” already used by Shipley (2009) in the context of GLMM,

and the package ape (Paradis et al. 2004). More specifically, the

above conditional independence statement (and all the others in

the basis set) can be analyzed using generalized least squares

models where the correlation structure of the data is given by the

expected covariance of species traits given the phylogenetic tree

and evolutionary model (for details on the code and function of

the analyses see Paradis 2006). The last step consists in testing

whether the predicted basis set of conditional independencies is

fulfilled in the observational data. This is done combining all the

values of pi (i.e., the probabilities that the nonadjacent variables

in the basis set are statistically independent conditional on their

parent variables) using Fisher’s C statistic

C = −2
k∑

i=1

(In(pi)) (1)

where k is the number of independence tests in the basis set. When

the model is correct, the C statistics follows a χ2 distribution with

2k degrees of freedom. The path model is thus considered to fit

the data when the C statistic is not significant (P > 0.05) (Shipley

2000a, 2004).

Unfortunately, different causal models can fit the same data

and therefore some form of model selection procedure is needed

to identify the best fitting, and thus most likely, causal model

among the set of accepted path models. Shipley (2000a) proposed
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an approach based on testing the difference in Fisher’s C statistics

of two competing nested models, which follows a χ2 distribution

with �df = dfmodel1 – dfmodel2. The basis model is rejected in

favor of the nested model when the probability associated with

C is lower than the chosen significance level (α = 0.05). This

approach, however, can be used only when comparing truly nested

models, that is, when the parameters fixed to 0 in the first model

are a subset of the fixed parameters in the second model. As an

appealing alternative, which can also be used for selecting among

nonnested models (provided the dataset is always the same for

all models in the set), we propose to use the Information Theory

approach recently applied, in the setting of a nonphylogenetic

path analysis, by Cardon et al. (2011). An information criterion

modified for small sample sizes and adapted to path analysis

(C statistic Information Criterion [CICc]) can be calculated as

follows (Cardon et al. 2011):

CICc = C + 2q × n

(n − q − 1)
(2)

where C is Fisher’s C statistic, n is the sample size, and q is the

number of parameters that is given by the total number of vari-

ables used to build the models (a constant within the same set of

models we are comparing), plus the number of edges linking them

(which can change for each model compared). Model selection,

as well as subsequent model averaging, can thus follow stan-

dard information theory procedures, whose detailed description

is outside the scope of the present article (for excellent accounts

on these procedures we refer readers to Burnham and Anderson

1998 and Grueber et al. 2011). Although Cardon et al. (2011) call

this information criterion AICc, we prefer to call it CICc to avoid

confusion with the original Akaike Information Criterion that is

based on the maximum likelihood of the data rather than on the

C statistic of the d-sep test. However, while this approach has

been previously used in the context of confirmatory path analysis

with the d-sep method (Cardon et al. 2011), the proposed CICc

statistic is still lacking formal proof. It should therefore be used

with caution, until further studies confirm its validity.

SIMULATIONS

We used a simulation-based approach to investigate the conse-

quence of ignoring phylogenetic relatedness when undertaking

path analyses using the d-sep method (Shipley 2000b). We simu-

lated evolution of five hypothetical traits using a prespecified co-

variance matrix among the traits determining a specific path model

(the same model depicted in Figure 1A and used as an example

in the previous section). Simulations were run under six different

scenarios spanning a continuum from null to strong phylogenetic

signal in the simulated data; or in other words from traits evolving

along a star phylogeny, where trait evolution for each species is in-

dependent, to traits evolving following a Brownian motion model,

where the degree of similarity between species traits is inversely

proportional to the distance to the nearest common ancestor. For

the scenario of strong phylogenetic signal, traits were simulated

to evolve on the simulated phylogeny under a Brownian motion

model. For the five remaining scenarios, we used the parameter

lambda (λ) (Freckleton et al. 2002) to transform the phylogenetic

tree prior to trait evolution. The λ parameter can take any value

between 1 and 0, where high values indicate strong phylogenetic

signal and low values indicate low phylogenetic covariance in the

data (see Freckleton et al. 2002). The simulated phylogeny was

transformed based on values of λ ranging from 0.8 to 0 (i.e., 0.8,

0.6, 0.4, 0.2, and 0) prior to simulating trait evolution and tests

of conditional independencies done using the untransformed tree.

For each of the six scenarios we simulated 1000 datasets, each

with an underlying phylogenetic tree of a fixed, arbitrary size of

100 species. Each simulation of trait evolution was done using

a different simulated phylogeny; hence our simulations also in-

corporated the effects of varying phylogenetic topology. At each

iteration, we calculated Fisher’s C statistic and obtained a distri-

bution of P-values to determine the level of Type I error (i.e., the

probability of rejecting the null hypothesis, in this case the tested

model, when it is true, testing the predicted set of conditional in-

dependencies consistent with the “true” underlying causal model

depicted in Fig. 1A) and the power (i.e., 1—the Type II error, the

probability of not rejecting the tested model when it is actually

false, testing the predicted set of conditional independencies of

a “wrong” causal model depicted in Fig. 1B). These simulations

were run both for d-sep tests ignoring phylogenetic effects and

for the phylogenetically explicit d-sep test. All simulations and

analyses were done in R (R Development Core Team 2011) using

the packages “ape” (Paradis et al. 2004), “nlme” (Pinheiro et al.

2011), and “geiger” (Harmon et al. 2008). Scripts used for the

simulations are provided as Supporting information.

AVIAN BROODMATE COMPETITION DATA

As an empirical example of PPA, we revisit the question of

which factors favor the evolution of aggressive sibling compe-

tition in birds (see Gonzalez-Voyer et al. 2007). In their study,

Gonzalez-Voyer et al. (2007) analyzed the correlation between

five behavioral and life-history traits—feeding method, feeding

rate, clutch size, egg size, and length of the nestling period—and

two measures of aggressive competition: incidence and intensity.

Incidence of aggression was the percentage of broods in which

aggression was reported and was measured on a 4-point scale.

Intensity of aggression was scored on a 4-point scale by five

judges independently, on the basis of qualitative and quantitative

descriptions of broodmate aggression in the primary literature,

and the median was used as the score (see Gonzalez-Voyer et al.

2007). Feeding method was a continuous variable expressed as the
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proportion of the nestling period (from hatching until fledging)

during which feeding is direct, ranging from 0 (indirect feeding

throughout the nestling period) to 1 (direct feeding throughout

the nestling period). For species with a developmental transition

in feeding method, the proportion was calculated on the basis

of the average age at which chicks switched from one method

to the other. Clutch size was used as a proxy for brood size at

hatching with which it was highly and significantly correlated

(Gonzalez-Voyer et al. 2007). Egg size was used as a proxy for

nestling body size at hatching with which it was highly and signif-

icantly correlated (Gonzalez-Voyer et al. 2007). Finally, average

length of the nestling period was the number of days separat-

ing hatching from fledging and was log transformed (for further

details on variables see Gonzalez-Voyer et al. 2007). Because

length of the nestling period and egg size were significantly cor-

related, in the original analyses egg size was omitted to avoid

problems of multicolinearity, however, the authors did find that

when replacing length of the nestling period by egg size the later

was not significantly correlated with either measure of aggres-

sive competition (Gonzalez-Voyer et al. 2007), suggesting there

is no direct association between egg size and aggressive competi-

tion. In the original study, Gonzalez-Voyer et al. (2007) included

69 species from seven different bird families, however, data on

egg size was not available for one species (Haliaeetus vocifer-

oides) so the dataset analyzed here includes 68 species. Because

Gonzalez-Voyer et al. (2007) did not find any significant rela-

tionship between feeding rate and either measure of aggressive

competition and data were not available for 27 species we did

not include this trait in the phylogenetic path analyses. For our

results to be comparable with the original study, the analyses were

done using the same topology as in Gonzalez-Voyer et al. (2007).

The dataset used for this study is available online as Supporting

information.

Due to the methodological limitations of the time, questions

remained unanswered. For instance, although the PGLS analy-

ses suggested there was no direct association between egg size

and aggressive competition, egg size could influence aggression

through its effect on clutch size and length of the nestling period.

Egg size, clutch size, and length of nestling periods are known

to be associated through life-history trade-offs between offspring

number and offspring size (see Bennett and Owens 2002). Sec-

ond, the authors found a significant negative correlation between

clutch size and intensity of aggression but the directionality of

the relationship was unresolved: smaller clutches could favor the

evolution of aggressive strife (Drummond 2002), alternatively

smaller clutches could be favored in species in which aggressive

competition has evolved to reduce the costs (Godfray and Parker

1992; Gonzalez-Voyer et al. 2007). Direct feeding method (i.e.,

when food passes directly from the parent’s to the chick’s bill)

had been proposed to favor aggressive competition because it al-

lowed dominant broodmates to attack and intimidate competitors

and hence monopolize the food. On the other hand, when food is

deposited on the nest floor (indirect feeding) it was assumed that

aggressive competition was not efficient for food monopolization

and hence would not be favored by selection (see Mock 1984,

1985). However, the hypothesis had been criticized (Drummond

2001a,b) and field studies with pelicans and cattle egrets did not

support it (Pinsón and Drummond 1993; Gonzalez-Voyer and

Drummond 2007). Following the steps described in the section

“Integrating the d-sep test with PGLS,” we tested these alternative

causal hypotheses using PPA.

Results
SIMULATIONS

As expected, path analyses undertaken ignoring phylogenetic

structure in the data presented very high nominal Type I error

rates (see Table 1), with the exception of the simulation scenario

under null phylogenetic signal. Low Type I error rates in this last

scenario are unsurprising because the data no longer presented

any phylogenetic signal and hence analyses using ordinary least

squares (OLS) methods are fully justified. On the other hand, PPA

presented much lower nominal error rates (see Table 1), although

in some cases these were slightly higher than the conventional

0.05 level. PPA outperformed path analysis ignoring phylogeny

in all scenarios except one (see Table 1). The only scenario in

which path analysis ignoring phylogeny presented a lower Type

I error rate than that of the phylogenetic path analysis was when

data were simulated without any phylogenetic signal whatsoever.

As could be expected, the Type I error rate for path analysis

ignoring phylogeny decreased as the phylogenetic signal in the

simulated data also decreased reaching its lowest value when the

phylogenetic signal was null, at which point the Type I error rates

of both methods converge (see Table 1). Power was much more

Table 1. Type I error and power for d-sep path analysis models

using PGLS or ordinary least squares on data from five hypothetical

traits simulated under six different phylogenetic signal scenarios

(for λ ranging from 0 to 1). Details on the simulations are provided

in the main text.

Correct path model
(Type I error)

Wrong path model
(Power)

λ PGLS OLS PGLS OLS
0 0.068 0.051 0.967 0.964
0.2 0.072 0.092 0.951 0.944
0.4 0.065 0.253 0.973 0.945
0.6 0.054 0.491 0.962 0.947
0.8 0.065 0.741 0.959 0.956
1 0.047 0.916 0.954 0.979
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Figure 2. Directed acyclic graphs of the tested hypothetical cause-effect models of the relationships among egg size (ES), clutch size

(CS), length of the nesting period (L), feeding method (FM), and two indices of aggressive sibling competition (intensity of aggression

and incidence of aggression; both labeled IA in the graphs) in 68 bird species.

similar between phylogenetic and nonphylogenetic path analysis

methods, indicating that both have relatively similar capability to

detect a wrong model (see Table 1).

PPA ANALYSIS OF THE EVOLUTION OF AGGRESSIVE

SIBLING COMPETITION IN BIRDS

Our first PPA model (model A) tests the directed graph depicted

in Figure 2A. This directed graph describes a multiple regres-

sion model in which intensity or incidence of aggression (IA)

directly depend from egg size (ES; a proxy for body size), clutch

size (CS), feeding method (FM) and Length of the nesting period

(L). This model, however, differs from the PGLS model tested in

Gonzalez-Voyer et al. (2007) as it implies no covariance among

the independent variables. We use this simple model as a start-

ing point to investigate the possible causal effects linking the

variables previously suggested to be related (directly or through

other variables) with intensity or incidence of aggression (Drum-

mond 2002; Gonzalez-Voyer et al. 2007). The results of the d-sep

test and the corresponding CICc value of the model are listed in

Table 2. The basis set of the conditional independence constraints

predicted by model A and all other PPA models presented in this

article as well as their associated P-values obtained with PGLS are

provided as Supporting information. Model A is clearly rejected

by the data, and looking at the individual d-separation statements

implied by the model we can see that the assumed independen-

cies between CS and L, CS and ES, as well as L and ES are

false (see Supporting information). We thus tested the alternative

hypothesis that ES is not directly linked with aggressive compe-

tition, but instead is the causal parent of CS and L, leaving the

other cause-effect relationships as in model A (model B, Fig. 2).

This model is not rejected by the data using intensity or incidence

of aggression as the dependent variable (P-value of Fisher’s C

test > 0.05, see Table 2), and thus we accept it as a possible

explanation of the cause-effect relationships among the variables.
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Table 2. Summary of the PPA model results for the 14 hypothet-

ical cause-effect models depicted in Figure 3 including intensity of

aggression (a) or incidence of aggression (b) as proxies of aggres-

sive sibling competition in 68 bird species. The best set of models,

with a �CICc < 2 is represented in bold.

(a) Intensity of aggression

Model C k q P-value CICc �CICc Wi

K 5.28 4 11 0.727 31.994 0 0.293
I 8.83 5 10 0.548 32.693 0.699 0.207
B 9.37 5 10 0.497 33.230 1.236 0.158
L 10.01 5 10 0.439 33.880 1.886 0.114
M 11.18 5 10 0.343 35.043 3.049 0.064
C 14.11 6 9 0.294 35.212 3.218 0.059
D 12.26 5 10 0.268 36.122 4.128 0.037
F 13.02 5 10 0.222 36.880 4.886 0.026
N 16.64 6 9 0.163 37.748 5.754 0.017
G 17.11 6 9 0.145 38.212 6.218 0.013
O 15.57 6 9 0.212 39.427 7.433 0.007
E 19.04 6 9 0.087 40.145 8.151 0.005
H 26.65 6 9 0.008 47.749 15.755 0.000
A 59.14 6 9 3.23 × 10−08 83.000 51.006 0.000

(b) Incidence of aggression

Model C k q P-value CICc �CICc Wi

I 5.68 5 10 0.841 29.547 0 0.339
K 4.16 4 11 0.842 30.875 1.328 0.174
N 9.77 6 9 0.636 30.879 1.332 0.174
B 8.25 5 10 0.604 32.110 2.563 0.094
D 9.13 5 10 0.520 32.989 3.442 0.061
L 9.52 5 10 0.484 33.375 3.828 0.050
M 9.79 5 10 0.459 33.654 4.107 0.043
O 10.28 6 9 0.591 34.146 4.599 0.034
C 13.60 6 9 0.327 34.708 5.161 0.026
F 15.15 5 10 0.127 39.010 9.463 0.003
G 19.24 6 9 0.083 40.343 10.796 0.002
E 21.56 6 9 0.043 42.662 13.115 0.000
H 23.63 6 9 0.023 44.742 15.195 0.000
A 59.14 6 9 3.23 × 10−08 83.000 53.453 0.000

C, Fisher’s C statistics; k, number of independence claims; q, number of

parameters; �CICc, difference in CICc from the best fitting model; W i, CICc

weights.

Model B suggests that nestling size at hatching (through its proxy

Egg size) may indeed have an indirect influence on aggressive

competition through its effects on length of the nestling period

and clutch size. As there is, however, controversy in the litera-

ture regarding the effects of feeding method and length of the

nestling period on aggressive competition (see Bortolotti 1986;

Drummond 2001a,b; Gonzalez-Voyer and Drummond 2007), and

there could be an effect of clutch size on feeding method, we

hypothesized and tested 12 other causal models (models C–O,

Fig. 2) with different possible combinations of the causal links

among L, CS, FM, and IA. The results of all these PPA models

and their relative explanatory power, expressed as CICc weights

(Wi), compared to each other including the previously described

models, are summarized in Table 2. Among these models, we also

specifically tested the hypothesis that intensity and incidence of

aggression have a causal effect on clutch size, an inverse causal

relationship to that assumed in the other models, that is, smaller

clutches are influenced by intensity or incidence of aggression

rather than the other way round (model D and M; Fig. 2). Both

model D and M are not rejected by the data, applying Fisher’s C

test, and thus provide a plausible explanation, using intensity as

well as incidence of aggression in the model (Table 2). However,

looking at the difference in CICc values between these and the

best fitting model (�CICc), the former appear to perform poorly

compared to models in which the link between IA and CS is in

the other direction (i.e., clutch size influences sibling aggression).

PPA thus allowed us to determine that the most likely direction

of the causal relationship between clutch size and intensity of ag-

gression is clutch size influencing intensity of aggression, hence

as predicted, smaller clutches favor the evolution of more intense

aggressive sibling strife (Drummond 2002; Gonzalez-Voyer et al.

2007). All of the best fitting models, with a �CICc < 2, predict

a strong causal link between L and IA (for both intensity and

incidence of aggression). A causal link between CS and FM ap-

pears to be supported also by the best models (for both intensity

and incidence of aggression) and with some support between FM

and IA. The causal links between CS and IA instead are only

supported when IA represents intensity of aggression but not in-

cidence, which is in accord with the results of Gonzalez-Voyer

et al. (2007). The standardized path coefficients with standard er-

rors and their 95% confidence intervals, averaged among the best

fitting models (with �CICc < 2), are provided in Table 3.

Discussion
We have shown how PPA can be easily conducted integrating

PGLS with the d-sep method developed by Shipley (2000b). Us-

ing simulations, we showed that PPA correctly identifies the true

causal structure of a model with reasonable Type I error rates. On

the contrary, path analysis using OLS methods and thus ignoring

the underlying phylogenetic signal presented Type I error rates

which increase with the level of phylogenetic signal in the data.

Type I error rates of ordinary path analysis are comparable to those

of PPA only when lambda = 0, which is unsurprising because

the data no longer presented any phylogenetic signal and hence

analyses using OLS methods are fully justified (Freckleton et al.

2002; Revell 2010). Power was similarly high both using PPA and

path analysis ignoring phylogenetic signal. High power in a path

analysis that ignores phylogenetic relationships is to be expected.
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Table 3. Standardized path coefficients (Coeff.) with standard errors (SE) and their lower and upper 95% confidence intervals (L95%CI

and U95%CI, respectively), averaged among the best fitting models (with �CICc < 2) obtained after model selection for models including

intensity of aggression (intensity) or incidence of aggression (incidence) as proxies of aggressive sibling competition in 68 bird species.

Intensity Incidence

Path Coeff. SE L95%CI U95%CI Coeff. SE L95%CI U95%CI

CS -> IA –0.27 0.13 –0.52 –0.02 –0.09 0.13 –0.34 0.16
L -> IA 0.33 0.14 0.06 0.60 0.35 0.11 0.14 0.56
FM -> IA –0.16 0.12 –0.38 0.07 –0.16 0.10 –0.36 0.03
CS -> FM –0.22 0.13 –0.49 0.04 –0.22 0.14 –0.49 0.05

ES, egg size; CS, clutch Size; L, length of the nesting period; FM, feeding method; IA, intensity or incidence of aggression.

Indeed, a consequence of ignoring phylogenetic nonindependence

is higher Type I error rates (Martins and Garland 1991; Rohlf

2006), therefore OLS path analysis models incorrectly identify a

higher number of significant correlations, which reduces the fre-

quency of nonsignificant d-separation and as a consequence tend

to reject every model. In sum, the end result of ignoring phyloge-

netic nonindependence in path analysis is relatively high power,

but very high Type I error rates. Our simulations clearly indicate

that when conducting a confirmatory path analysis on data with

an underlying phylogenetic signal and ignoring this signal, the

probability of rejecting the true causal model when it should have

been accepted are unacceptably high, making any inference on

the hypothesized underlying causal structure impossible. PPA on

the contrary efficiently accounts for the added phylogenetic cor-

relations in the data and allows to correctly discriminate between

correct and wrong hypothesized causal models.

As an empirical example of the application of PPA, we revis-

ited the analysis of the evolutionary correlates of aggressive sib-

ling strife in birds (Gonzalez-Voyer et al. 2007). PPA confirmed

the results of the previous study, identifying the hypothesized

causal model linking length of the nestling period and feeding

method to aggressive competition (for both incidence and inten-

sity of aggression), as well as the link between clutch size and

intensity of aggression (Gonzalez-Voyer et al. 2007). However,

PPA allowed us to identify other causal relationships that could

not be tested by the correlative analyses previously undertaken.

For example, egg size (a proxy for nestling body size at hatching)

was not included in the multiple regression models in the previous

study to avoid problems of multicolinearity. By applying PPA, we

were able to show that egg size presents an indirect causal link

with aggressive competition through its effect on clutch size and

length of the nestling period. Theoretical arguments had previ-

ously suggested that larger nestling size at hatching might enable

chicks to efficiently use aggression to intimidate siblings (Drum-

mond 2002). Our results suggest that the hypothesis needs to be

reframed, as a direct causal link between egg size and aggres-

sion is not supported. However, egg size does appear to have

an indirect influence on aggressive competition through its ef-

fect on clutch size and length of the nestling period. Comparative

studies have shown that there is a life-history trade-off in birds

between clutch size and egg size, which would explain the causal

link between egg size and clutch size (Bennett and Owens 2002).

There is also a positive relationship between egg size and fledg-

ing age across species, in other words nestlings hatching from

larger eggs also tend to present longer nestling periods (Bennett

and Owens 2002). According to the sibling competition hypoth-

esis, increased growth rate and hence shorter nestling periods

would be favored by sibling strife (Werschkul and Jackson 1979).

However, the hypothesis has been criticized and a comparison

of growth rates and lengths of nestling periods in eagles found

no support for it (Bortolotti 1986). Our results show there is in-

deed a link between length of the nestling period and sibling

competition. Results of the PPA also suggest there is a causal

link between clutch size and feeding method. Such a link had

not previously been envisaged by theoretical studies. It is possi-

ble that this link reflects the fact that more than half (51.4%) of

the 68 species included in the analysis were Accipitridae, which

tend to have small clutches and also present a developmental

switch from direct to indirect feeding. This potential novel link

between clutch size and feeding method will need to be analyzed

further. Finally, PPA allowed us to determine the directionality

of the causal link between clutch size and intensity of aggres-

sion. The previous analyses had identified a significant correlation

between the aforementioned traits, however it remained unclear

whether small clutches were a cause or consequence of intense

sibling aggression. PPA has allowed us to propose that intense

aggressive competition among siblings is favored by small clutch

size.

In conclusion, we strongly suggest that PPA should be used

when undertaking path analysis on multispecies datasets. Use of

PPA will result in much reduced Type I error rates compared to

path models ignoring phylogenetic structure in the data whereas

power will not be compromised. Our empirical example of the

application of PPA demonstrated how application of the method
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allowed us to propose novel causal hypotheses between species

traits and the evolution of aggressive sibling strife. Our results

suggest that large nestling size at hatching indirectly favors

evolution of aggressive competition through its effect on clutch

size and length of the nestling period. Furthermore, the results

confirmed the causal link between clutch size and intensity of

aggression and allowed us to determine the directionality of the

causal link, proposing that small clutches favor more intense

aggressive competition.
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