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Abstract
Habitat transformation is one of the leading drivers of biodiversity loss. The ecological effects of this trans-

formation have mainly been addressed at the demographic level, for example, finding extinction thresholds.

However, interpopulation genetic variability and the subsequent potential for adaptation can be eroded

before effects are noticed on species abundances. To what degree this is the case has been difficult to eval-

uate, partly because of the lack of both spatially extended genetic data and an appropriate framework to

map and analyse such data. Here, we extend recent work on the analysis of networks of spatial genetic var-

iation to address the robustness of these networks in the face of perturbations. We illustrate the potential

of this framework using the case study of an amphibian metapopulation. Our results show that while the

disappearance of some spatial sites barely changes the modular structure of the genetic network, other sites

have a much stronger effect. Interestingly, these consequences can not be anticipated using topological, sta-

tic measures. Mapping these networks of spatial genetic variation will allow identifying significant evolution-

ary units and how they vanish, merge and reorganise following perturbations.
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INTRODUCTION

Landscapes are being transformed at an unusual rate, so that popula-

tions become more and more fragmented. Metapopulation theory

has described the risks of population decline and the possibility of

extinction thresholds, namely values of habitat destruction at which

metapopulations become extinct despite some habitat being still

available (Lande 1987; Bascompte & Sol�e 1996; Hanski 1998). Simi-

larly, the emerging field of landscape genetics has described how iso-

lation by distance and other spatially related processes shape the

genetic structure of wild populations across landscapes (Manel et al.

2003; McRae & Beier 2007; Storfer et al. 2007). Global change is

expected to further alter the spatial distribution of genetic variability

shown by populations inhabiting such fragmented landscapes.

Assessing the rate and shape of this erosion of genetic variability is

important in characterising the effects of global change on the raw

material of adaptation.

In this study, we combine: (1) recent statistical methods describ-

ing how genetic variability is distributed among spatial sites, (2) net-

work approaches to characterise the architecture of these genetic

networks and (3) computer simulations addressing the effects of the

sequential loss of sites.

The starting point in our perspective is the concept of population

graphs (Dyer & Nason 2004). A population graph describes the net-

work of genetic variation among spatial sites that contains the

smallest link set that sufficiently describes the patterns of genetic

covariance (Dyer & Nason 2004, see Box 1). This is different from

traditional genetic approaches such as FST or AMOVAs that are

based on a pairwise analysis of effects, thus precluding the

characterisation of the simultaneous influence of all sites. Although

population graphs are certainly related to previous approaches, there

are subtle but important distinctions. For example, while traditional

AMOVA assesses whether there is significant genetic variation,

population graphs map how such a variation is distributed in space

(Dyer 2007). More importantly, a network approach benefits from

the tool kit of already developed analytical techniques (Urban &

Keitt 2001; Dyer 2007; Rozenfeld et al. 2008; Bascompte 2009;

Fortuna et al. 2009; Dale & Fortin 2010). Our second step is to use

one of these new tools, modularity analysis, to characterise the

architecture of the resulting networks of spatial genetic variation.

The concept of modularity has a long tradition in the analysis of

complex networks, both in physics and sociology (Newman &

Girvan 2004; Guimer�a & Amaral 2005; Danon et al. 2006; Fortuna-

to 2010). Modularity measures the tendency of a network to be or-

ganised in modules or compartments, where nodes within a module

interact frequently among themselves, but show little interaction

with nodes from other modules (see Box 2).

The search for modularity in food webs has been an active area

in ecology because of the potential implications for network persis-

tence (May 1972; Pimm & Lawton 1980). There have been two

main research directions. On one hand, ecologists have tried to find

evidence for modularity in real ecological networks (Pimm &

Lawton 1980; Raffaelli & Hall 1992; Meli�an & Bascompte 2004;

Olesen et al. 2007; Guimer�a et al. 2010). On the other hand,

researchers have explored the dynamical implications of modularity.

Stouffer & Bascompte (2011) have found that modularity increases

the persistence of realistic models of food webs because it buffers

the propagation of perturbations such as the extinction of a species.
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More recently, modularity analysis has been applied to genetic net-

works both at local as well as regional scales (Fortuna et al. 2008,

2009). The rationale for focusing on modularity is twofold. First, as

stated above, modularity is clearly linked with the persistence of the

network. Second, the resulting modules can be interpreted as a bot-

tom-up classification of populations and therefore determine the rele-

vant spatial scale. Indeed, nodes within a module are genetically much

more similar than they are with nodes belonging to other modules

and can therefore constitute elements of the same genetic class.

In this study, we advocate the approach of networks of spatial

genetic variation in the context of global change. One preliminary

step is quantifying the robustness of these networks by comparing

changes in their modular structure across a gradient of habitat alter-

ation. Here, we do so as follows. First, we perform node-removal

experiments, an approach previously used to assess robustness of

food webs (Sol�e & Montoya 2001; Dunne et al. 2002), mutualistic

networks (Memmott et al. 2004; Burgos et al. 2007; Rezende et al.

2007) and dispersal networks (Urban & Keitt 2001). Second, we

apply a recently developed method to quantify the changes in modu-

larity through consecutive node removals (Methods). This combined

approach can inform us on the rate and shape of network collapse.

In the particular context of the networks of spatial genetic variation,

it can provide insight, for example, on how the number of popula-

tions – and the underlying mapping of the genetic variation – will

change as some local sites are being lost. Also, these simulations can

be used to rank spatial sites in terms of the magnitude of the changes

to the overall network following their disappearance.

We apply the above framework to genetic data of the Betic Midwife

toad Alytes dickhilleni in the Sierra de Cazorla, Segura y las Villas, a

mountain region in south-eastern Spain (Fig. 1). Amphibians are a good

case study of spatial genetic networks. First, they are among the most

endangered vertebrates on Earth (Stuart et al. 2004), showing a high

sensitivity to global change (Pounds et al. 2006). Second, their patchy

habitats are very amenable to be described as a network of ponds (Fort-

una et al. 2006; Campbell Grant et al. 2010). As a consequence, the

number of articles on landscape genetics using amphibians has steadily

increased in the last few years (Arens et al. 2007; Giordano et al.

2007; Purrenhage et al. 2009; Steele et al. 2009; Murphy et al. 2010).

We illustrate the range of potential gradients of habitat alteration

of the above spatial network following two contrasting scenarios.

The first scenario would reflect the prevailing idea that extinction

probability increases as one moves from lowlands to mountain tops

– although the real pattern can be more complex than that (Pounds

et al. 2006). This would be a surrogate of the expected extinction

gradient due to the impact of the pathogenetic chytrid fungus

(Batrachochytrium dendrobatidis), which has been reported to be most

virulent at high elevations (Pounds et al. 2006) or because of nega-

tive effects of ultraviolet radiation (Lizana & Pedraza 1998). The

second scenario would be the inverse, reflecting a situation where

the probability of extinction would increase from mountain tops to

lowlands, as for example in the case of drought.

MATERIALS AND METHODS

Field work

Our study species is the Betic Midwife toad (Alytes dickhilleni). Its dis-

tribution is restricted to the mountains of south-eastern Spain. Adults

occur usually in rocky fissures next to water sources. This amphibian

has a remarkable reproductive behaviour. The male carries the eggs

Box 1: Population Graphs

Dyer & Nason (2004) developed a network approach to study the spatial distribution of genetic variation (the so-called population

graphs). The rationale for their approach is the need to move beyond the usual averaging summary statistics – as is commonly done in

landscape genetics – to embrace the simultaneous effects across all sites. The main steps for calculating the network of spatial genetic

variation are: (1) calculating the genetic distance between sites by translating multilocus genotypes of individuals to multivariate codifica-

tion vectors and (2) estimating the conditional independence structure of the genetic covariance.

The basis of the approach of population graphs is information on spatial genetic variability. This is measured as the tendency of individ-

ual genotypes in a site to vary from each other. Each node represents a spatial site with information on the genetic variance of the individ-

uals at this site in relation to the total variance. The procedure starts with a fully connected network in which all sites are linked to each

other by their genetic similarity, which determines link strength. Thus, the squared genetic distance between two sites i and j can be written

as (Fortuna et al. 2009):

d 2ij ¼ 1
2

PK
k¼1

"
1
Kpk

ðyik � yjkÞ2
#
;

where yik is the element of the vector of the average genotype in site i containing the value of allele k (Smouse & Peakal 1999); K is the

number of alleles; and pk are the allelic frequencies across sites.

The next step consists of the pruning of the above fully connected network by removing all links connecting sites whose genetic similar-

ity is mediated by their genetic similarity with common sites. This procedure leads to a network of genetic variation containing the smallest

link set that sufficiently explains the genetic covariance structure among sites. In that context, two sites will be linked if they have a signifi-

cant genetic covariance after removing the covariation that each of them has with the remaining sites. To decide whether a link between

sites i and j should be removed, one uses the following statistic (Whittaker 2004):

s ¼ �N Ln
h
1� ðrijÞ2

i
;

where N is the number of individuals in the entire data set, and rij is the partial correlation coefficient between sites i and j. This statistic

asymptotically follows a chi-square distribution. See Dyer & Nason (2004) for details, and Fortuna et al. (2009) for a working example

through all the steps.
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Box 2: Modularity

A network is said to be modular if it tends to be arranged in groups of nodes that interact frequently among themselves, but show few

interactions with nodes from other modules.

The analysis of modularity has constituted a bourgeoning field of research in the study of complex networks, with important contribu-

tions from physics and sociology. There are different methods to detect modules in complex networks, and the interested reader should

refer to the thoughtful reviews by Danon et al. (2006) and Fortunato (2010).

Modularity is defined as follows (Newman & Girvan 2004):

M ¼P
all modules i observed fraction of edges within module i � expected fraction of edges within module i

For the specific case of one-mode, undirected networks as the spatial networks here described, the previous expression can be written as

(Newman & Girvan 2004):

M ¼
X

all modules i

ei

L
�

X
all pairs of

species in i

km

2L

kn

2L

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼
X

all modules i

ei

L
� di

2L

di

2L

� �
;

where ei is the number of edges within module i, km (kn) is the degree of node m (n) and di is the sum of the degrees of all nodes in mod-

ule i.

Once the expression of modularity has been defined, a second challenge is to implement it in a complex network. Unfortunately,

there is no exact way to do so, and one has to use some heuristic numerical approach. The idea is to try different partitions of the net-

work in modules, to measure its modularity, and to compare it with other partitions so one ends up with the partition that maximises

the previous equation. As the size of the network increases, the number of combinations become impractical to be analysed systemati-

cally. Therefore, one needs a shortcut provided by an algorithmic approach. One very successful example is simulated annealing (Gui-

mer�a & Amaral 2005). This algorithm finds a modular structure by maximising the number of links between sites within the same

module and minimising the links between sites located in different modules. This procedure is time consuming, but can handle well net-

works of the size of the standard ecological systems (Danon et al. 2006).

Once a significant partition of the network into modules has been found, modularity analysis also classifies each node in terms of its role in

the overall topology (Guimer�a & Amaral 2005). Specifically, the importance of a node can be defined in terms of two quantities: within-mod-

ule degree and participation coefficient. The former indicates how important a node is within its module in terms of its number of interactions

with other nodes in that same module. The latter indicates how homogeneously distributed are a node’s links are across nodes from multiple

modules. The nodes with the highest participation coefficient are assumed to be very important in attaching the different modules. All this

information provides from a static view, a single snapshot of the network without temporal information.

(b)(a)

Figure 1. Our study species, the Betic Midwife toad (Alytes dickhilleni; a), is an endangered amphibian whose distribution is constrained to the mountain areas of south-

eastern Spain. In particular, our field site is constituted by a patchily distributed set of sites in the Cazorla mountain area (b). Pictures by Emilio Gonz�alez-Miras and

E.M.A. respectively.
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twined around its hind legs on land for c. a month, from fertilisation

until they are ready to hatch (Fig. 1a). Larvae have a slow maturation

rate and remain in permanent mountain streams and man-made cattle

troughs. This species has become highly endangered due to the frag-

mentation of suitable habitats and the modernisation of agriculture.

Field sampling was conducted between 2008 and 2010 in the Natu-

ral Park of Cazorla, Segura y las Villas, Ja�en Province, Spain (Fig. 1b).

This is an area represented by south-eastern Spanish Mediterranean

mountain vegetation on calcareous substrate. Deep soils are occupied

by deciduous vegetation, while rocky exposed slopes are dominated by

open pine forest and juniper (for additional details see Jordano 1995).

During the sampling period, we collected a total of 528 individual

toads from 29 local sites (eight in natural sites and 21 in artificial cattle

troughs). The altitudinal gradient of the different sites ranges from

414 to 1809 m. The minimum and maximum number of individuals

sampled per site was nine and 37 respectively. We sampled toe clips

from adults and small tail tips (2–5 mm) from tadpoles. Tissue sam-

ples were stored in 70% ethanol and maintained at �20� C in the lab.

After tissue collection, animals were released at the site of capture.

Laboratory methods

We isolated DNA from the previously collected tissue using a stan-

dard phenol/chloroform extraction protocol (Sambrook et al. 1989).

We generated multilocus genotypes using 11 polymorphic microsat-

ellites designed for Alytes dickhilleni (Albert et al. 2011) plus two mi-

crosatellites designed for the sister species Alytes muletensis

(Kraaijeveld-Smit et al. 2003). A Quiagen multiplex kit with standard

conditions and a Q-solution were used to generate multiplex PCR

with microsatellites of Alytes dickhilleni with 0.25 lM of primer,

3 lL of genomic DNA and annealing temperature of 62� C.
Amul14 and Amul15 microsatellites were amplified, each one in a

separate ‘touchdown’ PCR with an annealing temperature between 60

and 44� C, and a decrease of 1� C at each cycle. Both microsatellites

were amplified using 0.40 lM dye-labelled M13 primer, 0.25 lM
tailed-reverse primer, 0.034 lM M13 tailed-forward primer, 0.5 U

Taq DNA polymerase (Bioline) and 5 lL of genomic DNA.

Amplified fragments were analysed using an ABI 3130xl Genetic

Analyser with a LIZ 500 like size standard. The sizing of the geno-

types was performed using GeneMapper 4.0 (Applied Biosystems).

To ensure genotyping accuracy, we included a negative and a posi-

tive control per extraction and PCR, and reamplified at least 10%

of samples to screen for genotyping and human error.

Network of spatial genetic variation

We used the multilocus genotypes obtained above to build a net-

work of genetic similarity among sites. We followed the method

described by Dyer & Nason (2004) to build and prune the network

of spatial genetic variation (see Box 1). However, we took into

account the observed allelic frequencies in order to calculate the

matrix of genetic distances among sites, as in Fortuna et al. (2009).

When these frequencies are equiprobable, the original formulation

by Dyer & Nason (2004) is recovered.

Modularity analysis

To identify non-overlapping sets of genetically similar sites (i.e.,

modules) we used a heuristic method based on the maximisation of

a function called modularity (Newman 2004) combined with a simu-

lated annealing optimisation approach (Guimer�a & Amaral 2005) on

the network of genetic variation. Specifically, we used the weighted

version of the equation in Box 2 (Guimer�a et al. 2007) as it takes

advantage of the strength of the links, here represented by the

genetic similarity between a pair of sites. Because of the heuristic

nature of the method, we ran the algorithm 100 times and used the

maximum modularity value (remember this is a maximisation proce-

dure) as the modularity of the real network.

After estimating the value of modularity, we tested to what extent

this value departs significantly from random expectation. The statis-

tical significance of modularity is calculated by performing 1 000

randomisations of the network of genetic variation keeping exactly

the same number of links per site, but reshuffling them randomly

using a local rewiring algorithm (Gale 1957). The P-value was esti-

mated as the fraction of random networks with a modularity value

equal to, or higher than, the value obtained for the real network.

We also followed Guimer�a & Amaral (2005) to characterise the

topological role played by each site in keeping the genetic connec-

tivity at the landscape level (see Box 2). Specifically, for each site,

we calculated its within-module degree and participation coefficient.

The comparison between the modular structure of two networks

(hereafter ‘change in modules’) is based on the variation of informa-

tion introduced by Karrer et al. (2008). The variation of information

between the modular structure of two networks is the sum of the

information needed to describe the modular structure of one net-

work given the other and the information needed to describe the

modular structure of the later network considering the former. Spe-

cifically, the variation of information between networks A and B (V

(A,B)) is defined by:

V ðA;BÞ ¼ �
X
x;y

Pðx; yÞ log Pðx; yÞ
PðyÞ �

X
x;y

Pðx; yÞ log Pðx; yÞ
PðxÞ ;

where P(x) is the fraction of nodes assigned to module x in net-

work A, P(y) is the fraction of nodes assigned to module y in net-

work B and P(x,y) is the fraction of nodes assigned to module x in

network A and to module y in network B.

The above index goes from zero (the arrangement of the nodes

within modules is the same across the two networks) to log n (each

node constitutes its own module in one network, and all nodes are

assigned to a single module in the other network), n being the num-

ber of nodes. As we were comparing networks of different sizes,

we normalised this value by 1/log n, and therefore our measure of

change in modular organisation goes from zero to one.

Here, we applied the previous equation when comparing the ori-

ginal network and the subsequent one after deleting one local site.

To do so, we removed the multilocus genotypes of the individuals

collected in the corresponding site. Every time we removed a site,

we recalculated the network of genetic variation for the remaining

sites. After that, we characterised the modular structure of the

resulting network and compared the resultant module composition

to that of the original network of spatial genetic variation. This was

done by both removing one single site and by simulating the

progressive elimination of an increasing number of sites. In the

latter case, we used two gradients, starting from the site at the low-

est altitude and progressing towards the one at the highest altitude,

and vice versa, from the site at the highest altitude to the one at the

lowest altitude.

© 2013 John Wiley & Sons Ltd/CNRS
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RESULTS

The spatial network of genetic variation in Alytes dickhilleni is com-

posed of 27 nodes and 49 links (two sites were isolated after the

pruning process). This network shows a significant modular struc-

ture (m = 0.616,P < 0.001), with 65% of the links established

between nodes within the same module.

The resulting network is organised in 5 well-defined modules col-

our-coded in Fig. 2. There is some spatial clustering of modules,

which reflects natural dispersal among the sites.

This network constituted our baseline to compare with subse-

quent networks once one or several local sites had been removed.

First, we explored to what degree the effects of losing one local site

on the modular network structure changes across sites. This pro-

vided a measure of the relative importance of each site in maintain-

ing the architecture of the genetic network. Second, we proceeded

by removing an increasing number of nodes to assess the rate and

shape of the cumulative change in the network of spatial genetic

variation.

As can be seen in Fig. 3a, the effect of removing one local site

on the modular structure of the remaining network is quite hetero-

geneous. Actually, six out of the 29 sites have no effect whatsoever:

the resulting network has the same modular organisation as the ori-

ginal one in terms of the remaining nodes being allocated to the

same modules than before the removal.

In contrast, other local sites have a much stronger effect, so that

their removal leads to a change of c. 20% in the modular structure

of the remaining network. As these changes in network structure

can potentially have a large influence on dynamics (e.g. Holland &

Hastings 2008; Campbell Grant et al. 2010), it is imperative to iden-

tify these key local sites.

Given the difficulty in obtaining real data on the importance of

each node to its removal, the question is to what degree these

differences across local sites can be anticipated through static,

topological information of the network. To answer this question,

we compared the above measures of importance in terms of net-

work robustness with the ranking of each node in terms of their

participation coefficient and within-module degree, a measure of

their importance at the network level and within a module respec-

tively (see Box 2). The importance of each node regarding these

two properties is represented in Fig. 3b.

Neither the participation coefficient nor the within-module

degree show a significant correlation with the change in module

composition once that local site has been removed (q = �0.038,

P = 0.851, and q = �0.037, P = 0.855, respectively; Spearman rank

correlation coefficient). Therefore, these preliminary results would

suggest that none of the static indicators of the topological

importance of a node can anticipate their importance in terms of

robustness.

Once we have assessed the importance of the disappearance of

each one of the local sites, we next explore the cumulative changes

in the network of spatial genetic variation as each local site is pro-

gressively removed following our two contrasting altitudinal gradi-

ents. As noted in Fig. 4, the scenario paralleling the potential effects

of UV radiation (extinction risk growing from lowlands to mountain

tops) has a much greater effect on the module composition of the

spatial genetic network than the contrasting scenario where extinc-

tion risk grows from mountain tops to lowlands (paralleling

drought). Interestingly enough, despite the above quantitative differ-

ence, the rate of change in modular composition is similar for both

scenarios. Thus, losing only a few sites has a strong effect on the

genetic network and this levels off as the individuals of more sites

are driven extinct (Fig. 4).

Regarding the variation in the specific number of modules – here

used as surrogates of populations – this is as follows. For the low-

to-high removal scenario, the number of modules remains constant

until seven nodes have been removed. At this point, the number is

reduced from five to four modules, a number remaining constant

until 15th node is removed. From this point on, the number of

modules oscillates between two and three. A similar pattern is

found for the high-to-low removal scenario. Thus, the big changes

in module composition observed in Fig. 4 are mainly driven by a

reallocation of extant sites to different populations rather than by a

fast change in the number of populations.

DISCUSSION: TOWARDS A SPATIOTEMPORAL DESCRIPTION OF

GENETIC VARIABILITY

Modularity seems to be a recurrent property in networks of mating

and spatial genetic variability ( Fortuna et al. 2008, , 2009), although

there are too few studies to assess how common this topological

Figure 2. Observed network of spatial genetic variation in Alytes dickhilleni. In

this representation, each node indicates a spatial site and each link highlights the

presence of a significant genetic similarity between two such sites once the

genetic similarity to other sites has been accounted for. Node position and size

are proportional to its spatial coordinates in the field and to the number of

sampled individuals respectively. The thickness of a link is linearly proportional

to the level of genetic similarity between the two sites. Each colour indicates a

module, namely a group containing genetically similar sites. This network shows

a significant tendency to be organised in well-defined modules, which can be

regarded as populations or management units.
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structure is across different species or landscapes. Thus, our first

suggestion for future research would be to increase the range of

species and sites where these modular analysis are performed, using

the same approach to be able to compare across systems. For

example, is there a phylogenetic signal in terms of the structure of

these networks, with closely related species having similar architec-

tures? What are the most important life-history traits correlating

with the architecture of the networks of spatial genetic variation?

As noted earlier, modularity may constitute a more operative, bot-

tom-up definition of a population. Therefore, the sort of network

analysis advocated here can detect the spatial scale of significant

evolutionary units. This is an advantage over other measures cha-

racterising the topological role of each node such as its betweens

centrality which impose a particular scale – that of a node. Not sur-

prisingly, there is no significant differences between the between-

ness centrality of the nodes classified as connectors in Fig. 3b and

that of the remaining 16 nodes (results not shown). Given the role

of modules as an operative definition of populations, an important

extension would be to explore how the number of significant evolu-

tionary units changes as the drivers of global change increase.

The existence of a modular network has also direct implications

for the differential roles of the constituent nodes and for the robust-

ness of the overall network to perturbation. Thus, modularity implies

that different nodes have very different roles in terms of keeping the

overall connectivity. Nodes with the highest participation coefficient,

for example, are assumed to be the most important in linking differ-

ent modules. Still, our preliminary results suggest that topological

information may not be enough to provide an assessment of the

importance of a node in terms of changes in network structure after

node removal. This makes it more difficult to predict the relative

importance of the different sites, as it is much easier to rank them

from the point of view of static, topological information than doing

so in terms of dynamical information. This calls for an integration of

the temporal dimension in spatial networks. Independently of the

correlation between static and dynamic measures of a node’s impor-

tance, an important extension would be to assess how the number

and identity of key nodes will change with global change.

Regarding the robustness of the entire network, its modular struc-

ture can be particularly related to the propagation of fungal infec-

tion, a problem of growing concern worldwide (Stuart et al. 2004;

Pounds et al. 2006; Vredenburg et al. 2010; Walker et al. 2010).

Therefore, another suggestion for future work would be to consider

the spatial networks as the template where the propagation of fun-

gal infection takes place. Thus, one could deduce that, other things

being equal, the propagation of fungal infections would be slowed

down in a modular network in comparison with other types of net-

works. Actually, one recent study has found that the pattern of

spread of the fungal pathogen Batrachochytrium dendrobatidis is highly

influenced by the amphibian movement patterns (Vredenburg et al.

2010), which undoubtedly would affect the structure of the spatial

networks of genetic variation. If global change shapes the modular

structure of the spatial network, this will in turn likely affect its

responsiveness to infection.

Our current results are not only very preliminary, but should be

looked at as merely a way to illustrate a potentially useful approach

to assessing the systemic effects of global change in the networks

of spatial genetic variability. Note that here we eliminate a node and

recalculate the genetic similarity across sites using the same original
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respectively. The two sites in black become isolated after the pruning of the network. Other colours indicate the topological classification in panel (b). (b) Topological

importance of each site according to its participation coefficient and within-module degree. A within-module degree of zero indicates that the removed node has the

same number of links as the average node within that module. The vertical and horizontal lines separating the four domains are arbitrary. Numbers indicating the identity

of each site are as in Fig. 2 for comparison purposes.
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data. Of course, in a real scenario, individuals may disperse to other

nodes once one node has disappeared. This could affect the result-

ing network of genetic variability. Similarly, there may be temporal

lags between habitat alteration and their effects in the network of

spatial genetic variation. Future work should explore these issues

with truly temporal data. Also, temporal data will serve to assess the

degree to which network structure remains constant across years

even when the environment is constant. For example, although a

modular organisation has been postulated to potentially exert selec-

tive pressure in mating networks (Fortuna et al. 2008), the signal will

be significant only if the modular structure of the network remains

across time. Similarly, we need to add a functional layer on top of

these networks. The most relevant achievement would be to be able

to characterise the consequence of node removals on the relevant

ecological processes such as gene flow or mating.

In summary, only if we can incorporate a temporal dimension to

the study of networks of spatial genetic variation will we be in a

position to start building a framework to assess the consequences

of global change on the raw material of adaptation in heterogeneous

landscapes. This not only requires temporal data, but also new tools

to compare the structure of the networks through time. Hopefully,

the perspective here outlined will serve to assess to what degree

global change erodes the structure of these networks before demo-

graphic changes can be detected.
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