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Recurrent cycles of climatic change during the
Quaternary period have dramatically affected
the population genetic structure of many species.
We reconstruct the recent demographic history
of the coyote (Canis latrans) through the use of
Bayesian techniques to examine the effects of Late
Quaternary climatic perturbations on the genetic
structure of a highly mobile generalist species.
Our analysis reveals a lack of phylogeographic
structure throughout the range but past population
size changes correlated with climatic changes. We
conclude that even generalist carnivorous species
are very susceptible to environmental changes
associated with climatic perturbations. This effect
may be enhanced in coyotes by interspecific
competition with larger carnivores.

Keywords: canid; Pleistocene; North America;
mtDNA; Bayesian Skyline Plot; Canis latrans

1. INTRODUCTION
The Pleistocene was characterized by recurrent clima-
tic perturbations resulting in dramatic environmental
changes that affected the distribution and population
structure of plants and animals [1]. In temperate
species, glacial periods were generally associated with
range reductions owing to restriction of habitat,
whereas interglacial periods were typically associated
with range expansion. Many taxa illustrate the effects
such climate changes had on phylogeographic and
demographic patterns [2]. In particular, the last
glacial–interglacial transition coincided with major
extinction events and population declines in numerous
species distributed in the Northern Hemisphere [1,3].
In contrast, distribution and phylogeographic patterns
Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsbl.2012.0162 or via http://rsbl.royalsocietypublishing.org.
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from other organisms were amplified by the process of
colonization of newly available habitat after the last
glacial maximum [2,4] and basic patterns in the
routes of post-glacial expansions have emerged [5].

The degree of habitat specialization is likely to affect
the ability of species to persist during rapid environ-
mental changes, and specialist species had a higher
risk of extinction during the Pleistocene [6]. Generalist
species, on the other hand, are more likely to survive
because a subset of habitats allowing their exis-
tence remains throughout climate fluctuations. To
examine the role of Late Pleistocene and Holocene
climatic changes in shaping the genetic structure of a
highly mobile generalist carnivore, we inferred the phy-
logeographic structure and demographic history of the
coyote, Canis latrans, in North America based on
sequences of the mitochondrial control region.
2. MATERIAL AND METHODS
Our study is based on 837 sequences of a 414 bp fragment (includ-
ing gaps) of the mitochondrial control region from coyote samples
spanning the entire current distribution in the US and Canada
(electronic supplementary material, table S1). To visualize the phylo-
genetic relationships among the coyote haplotypes, we conducted a
Bayesian phylogenetic analysis using MRBAYES v. 3.1.2 [7]. Spatial
genetic structure of coyotes was analysed by spatial analysis of mol-
ecular variance using SAMOVA v. 1.0 [8]. To test for signals of
population expansion, we calculated a mismatch distribution and
conducted two neutrality tests (Tajima’s D, Fu’s Fs). We excluded
samples from the most recently (last century) colonized eastern
North America because recurrent gene flow between the invading
coyotes and resident eastern wolves [9–11] might bias demographic
inferences. Past population size trajectories were inferred using a
Bayesian coalescent (Bayesian Skyline Plot, BSP [3]) approach as
implemented in BEAST v. 1.5.4 [12]. To estimate absolute ages of
demographic events, we applied a substitution rate of 4.68 (and
additionally 9.36 and 3.64) per cent per million years which is
based on an average sequence divergence of 13.1 per cent [13] and
the estimated split between coyotes and gray wolves 1.4 (0.7–
1.8) Myr [14]. A detailed description of the analytical procedure is
given in the electronic supplementary material.
3. RESULTS AND DISCUSSION
Regional phylogeographic structure was neither detec-
ted in our Bayesian phylogenetic analysis (figure 1; cf.
[15]) nor in our spatial analysis of molecular variance
(electronic supplementary material, figure S1) which is
consistent with a lack of a strong population structure
on a continental scale [11,16]. Given that (i) coyotes
are good dispersers (individual dispersal distances over
100 km have been reported [17]), (ii) they are highly
adaptable to different resources and (iii) their natural
distribution range (the grasslands of the Great Plains)
was not fragmented during the Late Pleistocene glacial
cycles, then their population genetic structure is
expected to be low. However, the lack of a clear phylogeo-
graphic structure across the coyote’s entire distribution is
quite remarkable and rather unusual among North
American mammals. Most larger mammals that survived
the Last Glacial Maximum (LGM) in North America
and now inhabit a large part of the continent show a dis-
tinct phylogeographic pattern consistent with survival at
reduced population sizes in two or more isolated, ice-free
refugia [18–21]. A similar pattern has been reported on
a continental scale in the closely related gray wolf [13].
On small geographic scales, habitat-associated popu-
lation partitions have been observed both in coyotes
[22] and gray wolves [9,23,24].
This journal is q 2012 The Royal Society
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Figure 1. (a) Map of North America showing sample localities. (b) Bayesian phylogenetic tree of coyote haplotypes analysed in

this study. The number of coloured circles per haplotype corresponds to the number of individuals sharing a particular hap-
lotype. Colours refer to the state or province of origin (see part a). Nodal support in form of posterior probabilities of
�0.99, �0.95, �0.90 and �0.70 is indicated by black, dark grey, light grey and white circles, respectively. Haplotype IDs
in grey refer to sequences that were assigned to a particular haplotype but contained some missing data. Some coyote samples
from recently colonized regions had a dog haplotype.
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Figure 2. Demographic history of the coyote. (a) Mismatch distribution. Black columns represent the observed frequency of
pairwise differences. Gray lines refer to the expected distributions based on parameter estimates and their 95% confidence
limits simulated under a model of population growth. Sum of squared differences (SSD) and raggedness index (rg) and

their respective p-values are given. (b) Bayesian Skyline Plot (BSP) reconstruction of past population size trajectories. The
BSP shows the product of female effective population size ( fNe) and mutation rate (m) through time, assuming a substitution
rate of 4.68% My–1, according to the best estimate for the coyote/wolf split from [14] and an average interspecific sequence
divergence of 13.1% [13]. BSPs with time-scales based on lower and upper 95% confidence intervals for the coyote/wolf split
from [14] are shown in electronic supplementary material, figure S1. Glacial and interglacial periods are indicated, as well as

major vegetation characteristics/trends for central North America (following [25]). LGM, Last Glacial Maximum (approx.
18–20 kyr).
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Mismatch distribution (figure 2a) and neutrality tests
(D ¼ 21.4423, p ¼ 0.036; Fs ¼ 223.8241, p ¼ 0.006)
reject a constant population size through time. The pat-
tern of past population size trajectories, as inferred by
BSP, corresponds with environmental and climatic fluc-
tuations in the Late Pleistocene (figure 2b). Population
declines might be difficult to infer based solely on
contemporary samples, and BSP patterns might be
indistinguishable from constant population size through
time. However, this should not be true for periods of
rapid population growth. It is probable that the infer-
red population expansions followed periods of reduced
population sizes, something impossible to infer with
just contemporaneous data, in particular when it con-
cerns events far in the past. Our analysis inferred a
population expansion at the penultimate (Illinoian–
Sangamonian) glacial–interglacial transition, which
was likely facilitated by an associated change of the
environment from forested habitats in the Illinoian to
more open country in the Sangamonian [25]. Cooling
climate and associated vegetation changes during the
Late Wisconsinian glacial, in particular the spread of
forests in the northern plains region [25], coincides
with a population decline with a minimum after the
last glacial maximum (approx. 20 kyr), regardless of
the substitution rate used (figure 2b, electronic sup-
plementary material, figure S2). Thereafter, the spread
of grasslands in the Holocene approximately 9.5–5 kyr
(depending upon location) [25] is associated with a
drastic population expansion of coyotes. This expansion
peaked in the recent rapid colonization of nearly the
entire North American continent. However, this recent
colonization may have been facilitated by the near
Biol. Lett.
extermination of an interference competitor, the gray
wolf, in large parts of North America [26] and changes
in the landscape owing to the spread of agriculture.
Moreover, as coyotes generally avoid dense woodland
habitats, their colonization of such habitats in the
North American northeast might have been facilitated
by hybridization with ‘eastern’ wolves [12,13]. Today,
coyotes are found throughout North America in a
variety of habitats, except the High Arctic.

Recent evidence suggests a potentially time-
dependent rate of molecular evolution, which could
affect the dating of recent evolutionary/demographic
events, in particular, if one applies a molecular rate
obtained from an ancient split to more recent events
[27]. However, even if our estimates were affected by
this phenomenon they would be biased towards older
ages. This implies that the population decline observed
in the BSP by all means post-dates the LGM.

In conclusion, high dispersal distances and adap-
tability to different resources are likely to have
contributed to the lack of large-scale phylogeographic
structuring found in this study. However, although coy-
otes are a generalist species that can exist in a wide
range of habitat types and feed on various kinds of prey,
the coyote experienced demographic changes that corre-
late with the Late Quaternary expansion and contraction
of dry grasslands. Only recently, with the local exter-
mination of wolves, habitat changes and local
hybridization with ‘eastern’ wolves, have coyotes been
able to colonize a greater diversity of habitats. The com-
bined effects of interspecific competition and climate
change have likely driven demographic changes in
coyotes throughout their evolutionary history.
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